

Appendix G

Sediment Characterisation Assessment

Port of Mackay 13/12/18

Report

Level 31, 12 Creek St Brisbane QLD 4000 Australia

301001-02095-00-EN-RPT-0001

Disclaimer

This report has been prepared on behalf of and for the exclusive use of NQBP, and is subject to and issued in accordance with the agreement between NQBP and Advisian.

Advisian accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party.

Copying this report without the permission of NQBP and Advisian is not permitted.

Project No: 301001-02095-00-EN-RPT-0001 – Maintenance Dredging Sediment Characterisation Report: Port of Mackay

Rev	Description	Author	Review	Advisian Approval	Date
0	Original - Issued for use	ANA-	Sprak.		13/12/18
		A Kochnieff	S Neale	B Boylson	

Table of Contents

Execu	itive sui	mmary		Vii
1	Introd	luction		9
	1.1	Objec	tives	10
2	Previo	us sed	iment investigations	12
	2.1	Histo	rical contamination status	12
3	Metho	od		13
	3.1	Samp	ling locations and intensity	13
	3.2	Variat	tions to the SAP	13
	3.3	Field	methodology	19
	3.4	Labor	atory analysis	20
	3.5	Quali	ty Assurance / Quality Control	23
		3.5.1	QA/QC – Field sampling	23
		3.5.2	QA/QC – Laboratory Analysis	24
	3.6	Data	analysis	25
		3.6.1	Phase II – Sediment analysis for total contaminant concentration	ns 25
		3.6.2	Phase III – Elutriate analysis	25
		3.6.3	Phase III – Bioavailability analysis	26
		3.6.4	Phase IV – Toxicity testing	26
4	Result	ts		27
	4.1	Chani	nel and Swing Basin	27
		4.1.1	Physical characteristics	27
		4.1.2	Chemical characteristics	29
	4.2	Tug B	erth	31
		4.2.1	Physical characteristics	31
		422	Chemical characteristics	34

	4.3	Berth	Pockets	38
		4.3.1	Physical characteristics	38
		4.3.2	Chemical characteristics	41
	4.4	Dredg	ge Management Placement Area	44
		4.4.1	Physical characteristics	44
		4.4.2	Chemical characteristics	46
	4.5	Refer	ence sites	50
		4.5.1	Physical characteristics	50
		4.5.2	Chemical characteristics	52
	4.6	Comp	parison of Reference sites to DMPA	53
5	Data v	validati	on	56
	5.1	Field	sampling	56
		5.1.1	Field replicates	56
		5.1.2	Field split triplicate	56
		5.1.3	Field Blanks	60
	5.2	Labor	atory analysis	60
	5.3	Outlie	ers	64
6	Concl	usion		65
7	Refere	ences		66
Tab	le Li	st		
Table 2	2-1 Histo	orical cor	ntamination status of dredge sediments from each dredge area	12
Table 3	3-1 Desc	ription c	of the areas to be dredged and site requirements as per NAGD (2009)	14
Table 3	3-2 Samp	oling act	ivities	19
Table 3	3-3: Sum	mary of	Phase II and III analysis undertaken	22
Table 4	1-1 Partio	cle size c	distribution of sediments across the Channel and Swing Basin	28
Table 4	4-2 Sumi	mary of	chemical analysis results for Channel and Swing Basin	30

Table 4-3 Particle size distribution of sediments across the Tug Berth	32
Table 4-4 Summary of chemical analysis results for Tug Berth	36
Table 4-5 Particle size distribution of sediments across the Berth Pockets	39
Table 4-6: Summary of chemical analysis results for Berth Pockets	42
Table 4-7 Particle size distribution of sediments across the DMPA	45
Table 4-8: Summary of chemical analysis results for DMPA sites	48
Table 4-9 Particle size distribution of sediments across the reference sites	51
Table 4-10: Summary of chemical analysis results for reference sites	54
Table 5-1 Field split triplicate RPD and field triplicate RSD results	58
Table 5-2: Rinsate blank sample results	60
Table 5-3 QA/QC laboratory outlier summary table	61
Table 5-4: TB02 PAH outlier	64
Figure List	
Figure 1-1 Location of the Port of Mackay	11
Figure 3-1: Channel and Swing Basin sampling locations	15
Figure 3-2: Berth Pockets sampling locations	16
Figure 3-3: Tug Berth sampling locations	17
Figure 3-4: DMPA and reference site sampling locations	18
Figure 4-1 Particle size distribution of sediments in Channel and Swing Basin	29
Figure 4-2 Particle size distribution of sediments in the Tug Berth	33
Figure 4-3 Particle size distribution of sediments in the Berth Pockets	40
Figure 4-4 Particle size distribution of sediments in the DMPA	46
Figure 4-5 Particle size distribution of sediments in the reference sites	52

Appendix List

Appendix A Sampling and Analysis Plan

Appendix B Sediment Logs

Appendix C Laboratory Certificates

Executive summary

Sedimentation of navigational infrastructure at the Port of Mackay occurs naturally and is caused by the transportation of sediment from ocean currents, swell and tides, and cyclonic activity. These sediments require periodic removal to maintain safe and efficient operational depths. Prior to dredging, sediment characterisation in accordance with the National Assessment Guidelines for Dredging (NAGD) (Commonwealth of Australia, 2009) is required to assess concentrations of potential contaminants and the acceptability of the material to be dredged for unconfined ocean placement.

The sediments characterised in this report are located within the Port of Mackay Channel, Swing Basin, Berth Pockets 1, 3, 4 and 5 and Tug Berths. The characterisation was implemented based on the rationale and methodology for sampling and analysis outlined in the *Port of Mackay Sampling and Analysis Plan (SAP)* prepared by Advisian in September 2018. Field sampling was undertaken in a single mobilisation from 24 to 28 September 2018.

As summarised in the table below, the sediment characterisation indicates that the concentrations and / or 95% Upper Confidence Limit (UCL) of the mean of all chemical contaminants analysed are below the respective NAGD screening criteria.

As per the NAGD assessment framework, it is considered that the sediments to be dredged from the Port of Mackay Channel, Swing Basin, Berth Pockets 1, 3, 4 and 5 and Tug Berths are suitable for unconfined ocean placement in the Dredge Material Placement Area (DMPA).

In accordance with Section 4.2.1 of the NAGD, the typical validity period for Phase II and Phase III results is five years. This means that, depending on other activities at the port, the results from this assessment may be valid until 24 September 2023.

Maintenance Dredging Sediment Characterisation Report

REMARKAN BULK
PORTS
CERTRICIAN

Port of Mackay

				9	95%UCI					9	5%UCI						5%UCL					95%UCL
Sample Location	Units	H-3	SB	ВР	ТВ	REF SG	Sample Location	Units H	-3 SB	ВР	ТВ	REF SG	Sample ID	Units	H-3	SB BP	ТВ	REF SG	Sample ID	Units H	SB BP	TB REF S
Misc							BTEXN						PAH						Organochlorine Pesticide	s		
% Moisture	%	52.3					Benzene	mg/kg					Normalised to % TOC	μg/kg		45.2	186.4		Endosulfan (sum)	μg/kg		
Total Organic Carbon	%	0.77					Toluene	mg/kg					Benzo(k)fluoranthene	μg/kg					Endrin	μg/kg		
Metals and Metalloids							Ethylbenzene	mg/kg					Normalised to % TOC	μg/kg		25.3	91.3		Endrin aldehyde	μg/kg		
Arsenic, As	mg/kg	7.3	9.0	8.5	8.0	21.0 9.6	meta- & para-Xylene	mg/kg					Benzo(e)pyrene	μg/kg					Endrin ketone	μg/kg		
Cadmium, Cd	mg/kg	< 0.1					ortho-Xylene	mg/kg					Normalised to % TOC	μg/kg		25.1	279.3		Heptachlor	μg/kg		
Chromium, Cr	mg/kg	16	21.1	26.1	25.7	4.4 4.5	Total Xylenes	mg/kg					Benzo(a)pyrene	μg/kg					Heptachlor epoxide	μg/kg		
Copper, Cu	mg/kg	140	15.0	24.6	24.5	4.3 1.8	Sum of BTEX	mg/kg					Normalised to % TOC	μg/kg		35.8	135.8		Hexachlorobenzene (HCB)	μg/kg		
Lead, Pb	mg/kg	27.7	13.1	15.2	15.5	14.1 2.9	Naphthalene	mg/kg					Perylene	μg/kg					gamma-BHC	μg/kg		
Mercury, Hg	mg/kg	0.03	0.02	0.025	0.03		PAH						Normalised to % TOC	μg/kg		21.9	121.6		Methoxychlor	μg/kg		
Nickel, Ni	mg/kg	8.4	12.0	14.9	15.1	3.7 2.2	Naphthalene	μg/kg					Benzo(g.h.i)perylene	μg/kg					cis-Chlordane	μg/kg		
Zinc, Zn	mg/kg	165	40.4	68.4	56.9	7.9 7.4	Normalised to % TOC	μg/kg		17.7	15.4		Normalised to % TOC	μg/kg		21.2	60.4		trans-Chlordane	μg/kg		
Organotins							2-Methylnaphthalene	μg/kg					Dibenz(a.h)anthracene	μg/kg					Total Chlordane (sum)	μg/kg		
Monobutyltin - Phase II	μg Sn/kg	18					Normalised to % TOC	μg/kg			8.1		Normalised to % TOC	μg/kg		6.8	15.7		Oxychlordane	μg/kg		
Normalised to % TOC	μg Sn/kg	23.38					Acenaphthylene	μg/kg					Indeno(1.2.3.cd)pyrene	μg/kg					Sum of Aldrin + Dieldrin	μg/kg		
Dibutyltin - Phase II	μg Sn/kg	50					Normalised to % TOC	μg/kg		4.6	25.1		Normalised to % TOC	μg/kg		19.7	58.8		Radionuclides			
Normalised to % TOC	μg Sn/kg	64.94			1.4		Acenaphthene	μg/kg					Coronene	μg/kg					Gross alpha	Bq/kg DW		916.9
Tributyltin - Phase II	μg Sn/kg	177					Normalised to % TOC	μg/kg		16.9	9.9		Normalised to % TOC	μg/kg		5.3	16.1		Gross beta	Bq/kg DW		575.4
Normalised to % TOC	μg Sn/kg	229.87	7	1.6	3.6		Fluorene	μg/kg					Sum of PAHs	μg/kg					Sum of radionuclides	Bq/kg DW		1418.0
TPH							Normalised to % TOC	μg/kg		9.5	23.9		Normalised to % TOC	μg/kg		697.3	3486.0					
TPH C6-C9	mg/kg						Phenanthrene	μg/kg					Organochlorine Pesticide	5					Notes			
TPH C10-14	mg/kg			7.0	6.0		Normalised to % TOC	μg/kg		71.9	367.5		Aldrin	μg/kg					SB: Swing Basin			
TPH C15-28	mg/kg			24.8	32.2	10.9 8.8	Anthracene	μg/kg					alpha-BHC	μg/kg					BP: Berth Pockets			
TPH C29-36	mg/kg			20.6	29.2	8.4 8.4	Normalised to % TOC	μg/kg		10.6	75.2		beta-BHC	μg/kg					TB: Tug Berth			
Total TPH	mg/kg			50.3	67.1	19.5 17.7	Fluoranthene	μg/kg					delta-BHC	μg/kg					Ref: Reference sites			
TRH							Normalised to % TOC	μg/kg	1	151.0	1029.0)	4.4`-DDD	μg/kg					SG: Spoil Ground (as kno	wn as Dredge	e Material I	Placement
C6 - C10 Fraction	mg/kg						Pyrene	μg/kg					4.4`-DDE	μg/kg					Area (DMPA))			
C6 - C10 Fraction - BTEX	mg/kg						Normalised to % TOC	μg/kg	1	115.2	700.2		4.4`-DDT	μg/kg					H-3: Historical sampling	location adjac	ent to slip	vay
>C10 - C16 Fraction	mg/kg			7.0	6.3		Benz(a)anthracene	μg/kg					Sum of DDD + DDE + DDT	μg/kg					Value exceeds NAGD or agi	eed local scree	ning level	
>C16 - C34 Fraction	mg/kg			36.1	47.9	15.1 14.1	Normalised to % TOC	μg/kg		60.9	345.0		Dieldrin	μg/kg								
>C34 - C40 Fraction	mg/kg			14.6	22.0	7.1	Chrysene	μg/kg					alpha-Endosulfan	μg/kg								
>C10 - C40 Fraction (sum)	mg/kg			57.5	75.9	22.5 14.1	Normalised to % TOC	μg/kg		50.4	284.2		beta-Endosulfan	μg/kg								
>C10 - C16 Fraction- Naphthalene	mg/kg			7.0	6.3		Benzo(b+j)fluoranthene	μg/kg					Endosulfan sulfate	μg/kg								

1 Introduction

The Port of Mackay (the Port) is operated by North Queensland Bulk Ports Corporation (NQBP) and is situated approximately four kilometres north of the Pioneer River mouth at North Mackay, on the central Queensland coast (Figure 1-1). The Port commenced operations in 1939 and has continued to develop and grow since this time. There are four operational berths and associated loading/unloading facilities. The Port is located within the Great Barrier Reef World Heritage Area (GBRWHA) but falls outside of the Great Barrier Reef Marine Park (GBRMP). Multiple commodities pass through the Port facilities, including fuels, refined and bulk sugar, bulk molasses, liquid chemicals, bulk fertilisers, bulk grain, general cargo and iron concentrates.

NQBP conducts maintenance dredging within the Port to maintain declared depths within the Channel, Swing Basin and berth areas. Sedimentation of the Port occurs naturally and is caused by the transportation of sediment from ocean currents, swell and tides, and cyclonic activity. These sediments require periodic removal from the navigational areas to maintain safe and efficient operational depths.

NQBP has existing approvals in place for maintenance dredging within the Port, including a tenyear Sea Dumping Permit (2012-2022) and an associated and approved Long-Term Dredge Management Plan (LTDMP). The approval requires that a sediment characterisation assessment, consistent with previous assessments, be completed every five years to ensure sediments remain suitable for on-going ocean disposal at the approved Dredge Material Placement Area (DMPA).

As set out in the LTDMP (WorleyParsons, 2010), there are potentially four major dredge programs within the 10-year approval, with each program removing an estimated 130,000 m³ of material. Minor dredge programs are scheduled annually between major programs as part of the routine maintenance dredging program with each removing approximately 10,000 m³ of material. The next major program is scheduled to be conducted in 2019 or 2020. The dredge material is placed at the approved DMPA approximately 3km north-east of the port entrance per the conditions set out in the port's 10-year Sea Dumping Permit.

Advisian were commissioned by NQBP to undertake a sediment characterisation assessment within the Port. The assessment is required prior to the proposed dredging campaign to support placement of maintenance dredge material at sea under NQBP's existing approval and LTDMP.

A Sampling and Analysis Plan (SAP) outlining the process by which the sediments are to be characterised was prepared by Advisian in 2018 in accordance with the National Assessment Guidelines for Dredging (NAGD) (Commonwealth of Australia, 2009). A full copy of the SAP is provided in Appendix A. This report details the results of the sediment characterisation assessment undertaken in accordance with the SAP.

Sediment characterisation was undertaken in all navigational areas of the Port (Channel, Swing Basin, Berth Pockets 1, 3, 4 and 5, Tug Berths), the DMPA and associated offshore Reference sites. All sampling was undertaken in accordance with the requirements outlined within the NAGD (Commonwealth of Australia, 2009) and aligned with the most recent survey completed in 2013 (Golder Associates, 2013) and the LTDMP (WorleyParsons, 2010).

Additional sampling was carried out at location H-3 adjacent to the slipway to continue monitoring historical contamination detected at this site.

1.1 Objectives

The objectives of the sediment characterisation assessment are to:

- Undertake the sediment characterisation in accordance with the SAP
- Ensure sampling is undertaken consistent with industry best practice and the NAGD (Commonwealth of Australia, 2009)
- Understand the quality and contamination status of sediments to be dredged from the Port
- Achieve high quality laboratory analysis results incorporating appropriate Quality Assurance (QA) / Quality Control (QC) through use of recognised and National Association of Testing Authorities, Australia (NATA) accredited analytical laboratories with expertise in marine sediment quality assessment applicable to dredge material management
- Ensure data from sampling is accurately reported, summarised, analysed and stored safely to
 provide confidence in the efficacy of the sediment sampling, handling, testing, analysis and
 reporting sufficient to determine the suitability of the dredge material for placement in
 accordance with the Sea Dumping Permit and LTDMP.

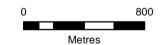
Figure 1-1:
Location of the Port of Mackay
and the navigational areas
associated with the Port

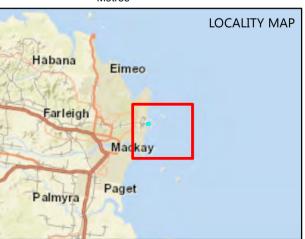
LEGEND

Berths and operational areas

Swing basin

Existing DMPA


///, 2018 Dredge area


Source Information:
Port facility layout and dredge area
Provided by NQBP - Sept 2018
Imagery - Web Service
Dept of Natural Resources and Energy

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:25,000

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong). Esri Korea. Esri (Thailand). NGCC. © OpenStreetMap contributors, and the GIS User Community

2 Previous sediment investigations

The most recent and relevant studies which characterise the sediments found in the Channel, Swing Basin Area, Berth Pockets and Tug Berth Areas within the Port include:

- WorleyParsons, 2007. Mackay Port Authority: Port of Mackay Harbour Sediment Quality Assessment.
- WorleyParsons, 2010. NQBP Mackay Harbour and Spoil Ground 2009 Sediment Characterisation Report, document number 301001-00797-00-EN-REP-0001.
- Golder Associates (2013). 2013 Maintenance Dredging Sediment Characterisation Report.
 Report prepared for NQBP.

The main findings from each study are detailed in the SAP (Appendix A) and a summary of the historical contamination status is provided below.

The surrounding marine habitats and associated environmental values along with the management objectives for the port, dredge areas and the DMPA are summarised in the LTDMP.

2.1 Historical contamination status

A summary of the historical sediment suitability for ocean placement for each of the dredge areas is provided in Table 2-1. All previous investigations found that the sediment from all dredge management areas was suitable for ocean placement.

Table 2-1 Historical contamination status of dredge sediments from each dredge area

Management Area	Location	Suitability for Ocean Placement
Channel and Swing Basin	Channel and Swing Basin	Suitable
Berth Pockets	Berth Pockets	Suitable
Tug Berth	Tug Berth	Suitable

3 Method

Sediments for Phase II (sampling and analysis) were collected from 24 to 28 September 2018.

3.1 Sampling locations and intensity

The number of sampling locations was based on the anticipated dredge volumes for each dredge area in accordance with Appendix A of the NAGD, 2009. These are provided in Table 3-1. This is generally consistent with in the most recent previous sediment characterisation assessment (Golder Associates, 2013).

Sampling was undertaken at each maintenance dredge area within the Port: Channel and Swing Basin, Berth Pockets 1, 3, 4 and 5 and Tug Berths. Sampling was also undertaken at reference sites (REF) and within the DMPA. The fixed sample location H3 is located adjacent to the slipway and was included for consistency with previous sediment characterisation programs. The sampling locations in each dredge area are presented in Figure 3-1 to Figure 3-4.

3.2 Variations to the SAP

Variations to the approved SAP that occurred in execution of the works are set out below:

- No field triplicate was taken at DMPA-1 due to the dense sandy seabed and depth of water at this site. The dense seabed restricted the grab sampling device from penetrating effectively. After 30 attempts, only material of a volume sufficient for the primary sample analysis was obtained. The above changes resulted in obtaining two fewer samples than indicated in the SAP (39 instead of 41).
- Particle size distribution (PSD) analysis could not be completed on sample REF03 due to sample volume.
- Ten additional PSD analyses were scheduled to provide more complete information regarding sediment textures.

Table 3-1 Description of the areas to be dredged and site requirements as per NAGD (2009)

Dredge Area	Estimated Maximum Dredge Volume ²	Sampling locations required as per NADG (2009)	Number of grid squares	Sampling locations with currency from previous work	Revised number of sampling locations required	Number of sites sampled
Channel and Swing Basin	80,000	16	80	No	8 ¹	8
Berth Pockets	27,000	9	45	No	6 ¹	6
Tug Berths	10,000	6	30	No	6	6
DMPA	-		-	-	3	3
Reference	-	-	-	-	3	3
Slipway ³	-	-	-	-	1	1
Total	117,000				27	27

Notes

¹ where indicated the number of sample sites was reduced due to previous information and a classification of 'probably clean'. This methodology is acceptable under the NAGD

² Dredge volumes and depths are based on reported figures Golder Associates, 2013

³ Sample location H3

Figure 3-1:
Channel and Swing Basin
Sampling Locations

LEGEND

• Fixed sampling location

Sampling location

Sampling grid

Berths and operational areas

Swing basin

Swing basin and channel dredge area

Source Information: Port facility layout Provided by NQBP - Sept 2018 Imagery - Aug 2017 Provided by NQBP - Sept 2018

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:5,000

0 200

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC. © OpenStreetMap contributors, and the GIS User Community

Figure 3-2: **Berth Pockets Stratified Sampling Locations**

LEGEND

Sampling location

Sampling grid

Berths and operational areas

Berth pocket dredge area

Source Information: Port facility layout Provided by NQBP - Sept 2018 Imagery - Aug 2017 Provided by NQBP - Sept 2018

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:3,500

> 0 25 50 75 100 Metres

Figure 3-3: Tug Berth **Sampling Locations**

LEGEND

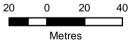
Sampling location

Sampling grid

Berths and operational areas

Tug berth pocket dredge area

Source Information: Port facility layout Provided by NQBP - Sept 2018 Imagery - Aug 2017 Provided by NQBP - Sept 2018


While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd

© State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55

Scale at A3 - 1:2,000

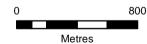
Figure 3-4: DMPA and Reference Sites Sampling Locations

LEGEND

Sampling location

Existing Dredge Material Placement Area

Great Barrier Reef Marine Park boundary


Source Information:
Port facility layout and dredge area
Provided by NQBP - Sept 2018
Imagery - Web Service
Dept of Natural Resources and Energy
Great Barrier Reef Marine Park Boundary
Great Barrier Reef Marine Park Authority

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018 © Australian Government 2018

Coordinate System: GDA 1994 MGA Zone 55

Scale at A3 - 1:25,000

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong). Esri Korea. Esri (Thailand). NGCC. © OpenStreetMap contributors, and the GIS User Community

3.3 Field methodology

Field sampling procedures, conforming to *Appendix F Field and laboratory quality assurance and quality control* of the NAGD (2009) and Advisian's QA/QC protocols, were carried out to minimise the potential for cross contamination and preserve the sample integrity. Table 3-2 provides a summary of the sediment sampling activities undertaken.

Table 3-2 Sampling activities

Activity	Details
Sampling locations	The co-ordinates of the sampling locations were uploaded onto a Garmin 76CSx Global Positioning System (GPS) unit with an accuracy of +/-5m. The Garmin was used to navigate to the locations and if required, also reposition the locations due to site conditions.
Sediment sampling and horizon	Grab Sampling: Samples were collected using a boat deployed van Veen grab sampler. The grab sampler is constructed of stainless steel and has an approximate grab payload of 5kg. Using a pulley system, the grab sampler is deployed from the boat and lowered to the sea floor where it would trigger shut and capture sediments ranging in depth from 10-15cm. Once collected the sample, the grab sampler is then lifted back to the surface where it is opened and sediments placed directly into stainless steel mixing bowls for processing.
Location log	The following information was recorded at each sampling location and presented in Appendix B: Name of client Sampling date General location of sample collection Sample identifiers assigned Name of the sample collector Type of sampler used Weather conditions at the time of sampling Sea state at time of sampling General comments (e.g. Wind speed, level of shipping etc.) GPS location (easting and northing) Time of sampling Water depth Photograph of sediment sample
Sediment log	A sediment log (Appendix B) was recorded for each location on a field data sheet, providing a description of the texture and composition of each sample, including the following information Colour Sediment field texture Observed sand grain size

Activity	Details
	 Consistency Plasticity Moisture content of sample (e.g. wet, moist, dry) Percentage of stones Presence of shell/shell grit Odour (e.g. marine, sulphurous)
Sediment sampling & storage	Samples were homogenized in stainless-steel mixing bowls using powderless nitrile gloved hands. Homogenised sediment material was then placed into laboratory supplied 250ml and 125ml glass jars leaving zero head space and into zip lock bags. Label information was completed on each sample container and the containers were stored on ice in eskies.
Labelling	Sample bags and jars were labelled with the date, the abbreviated project location (Mackay), the location number / depth, sampler's initials, date and time of sampling. For instance, a sample collected at SB02 at a depth of 0.0-0.5m was labelled as follows:
	SB02 GRAB (sample I.D) NB (initials of sampler) 24/09/18 (date sampled) 15:00 (time sampled)
Decontamination	Decontamination between samples included washing of all sampling equipment with ambient sea water and a laboratory grade phosphate free detergent (Decon 90), and successive rinsing with deionised water.
Dispatch	All samples were transported under chain of custody documentation to ALS's Mackay depot where they were refrigerated until being air freighted to ALS Brisbane for analysis. Blind duplicate samples were forwarded by ALS to SGS.

3.4 Laboratory analysis

Samples were analysed for the following list of primary physical characteristics and chemicals of concern, as indicated in the SAP (Advisian, 2018). These included:

- Moisture content (%)
- Particle size distribution (PSD) and settling rate
- Total organic carbon (%TOC)
- Metals and metalloids including: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn)
- Organotin compounds, tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT
- Polycyclic Aromatic Hydrocarbons (PAH) excluding the Channel and Swing Basin

- Total Petroleum Hydrocarbons (TPH) and Total Recoverable Hydrocarbons (TRH) excluding the Channel and Swing Basin
- Organochlorine Pesticides (OCP) at the Tug Berth only.

Phase III laboratory analysis included:

PAHs in elutriate.

Table 3-3 provides a summary of the chemical analyses undertaken on sediments collected at specific sampling locations for Phase II and Phase III samples. Primary analysis was undertaken by Australian Laboratory Services (ALS), while and Société Générale de Surveillance (SGS) was commissioned to provide the secondary laboratory analyses on blind duplicate samples. Both laboratories are NATA accredited for the analyses undertaken.

All samples were submitted to ALS under a single work order EB1823470. The blind duplicate samples were forwarded to SGS by ALS where they were analysed as work order SE184684.

As part of the QA/QC process (refer to Section 3.5), the laboratory reported results to the Lowest Practical Quantitation Limit (PQL) or the limit of reporting (LOR) at the time of analysis. The PQLs are those necessary to accurately determine contaminant concentrations at, or near, natural levels, or to reliably detect organic substances that may have impacts at very low environmental concentrations. The LORs achieved for each of the respective analyses are reported in conjunction with the results in Section 4 of this report. These LORs comply with minimum PQLs required under the NAGD Appendix A, Table 1.

The laboratory methods are designed to minimise matrix interferences and to meet or exceed the NAGD PQLs. However, if moisture content exceeds 50%, PQLs may need to be raised to meet quality assurance protocols. Laboratory and Quality Assurance procedures comply with those specified in Appendix F of NAGD.

Table 3-3: Summary of Phase II and III analysis undertaken

						A	nalysis			
Phase		/ Sample tion ID	Sample type	TOC & Moisture	Metals & Organotins	TPH, TRH & PAH	ОСР	Radio- nuclides	PSD & settling rate	Elutriate
2	SB_02	T1, T2, T3	G	3	3				3	
2	SB_16	SB_16	G	1	1				1	
2	SB_40	SB_40	G	1	1					
2	SB_45	SB_45	G	1	1				1	
2	SB_50	SB_50	G	1	1					
2	SB_52	SB_52	G	1	1				1	
2	SB_58	SB_58	G	1	1					
2	SB_79	SB_79, D1, D2	G	3	3				3	
2	B1_02	T1, T2, T3	G	3	3	3			3	
2	B1_07	B1_07	G	1	1	1				
2	B3_14	B3_14	G	1	1	1			1	
2	B4_01	B4_01	G	1	1	1			1	
2	B5_08	B5_08	G	1	1	1				
2	B5_10	B5_10, D3, D4	G	3	3	3			3	
2	TB_02	TB-1	G	1	1	1	1	1	1	
2	TB_05	T1, T2, T3	G	3	3	3	3	3		
2	TB_12	TB_12	G	1	1	1	1	1		
2	TB_18	TB_18	G	1	1	1	1	1	1	
2	TB_26	TB_26	G	1	1	1	1	1		
2	TB_29	TB_29, D5, D6	G	3	3	3	3	3	3	
2	REF_01	REF-1	G	1	1	1			1	
2	REF_02	REF-2	G	1	1	1			1	
2	REF_03	REF-3	G	1	1	1			1	
		DMPA-1 T1		1	1	1			1	
2	SG_01	DMPA-1 T2 DMPA-1 T3	G		C	ould not c	ollect			
2	SG_02	DMPA-1 13	G	1	1	1			1	
2	SG_03	DMPA-3	G	1	1	1			1	
2	H-3	H-3	G	1	1	<u>'</u>			1	
3	п-3 ТВ_02	п-э ТВ-1	G	'						1
	10_02	ו-טו	U							1
Notes	Dlim al 112	lianta as 1								
		licate sample	.							
	Triplicate									
G	Grab san	nple								

3.5 Quality Assurance / Quality Control

Appropriate QA/QC is an essential element of the sampling program and was included in all aspects of the field sampling and processing of the samples. This section details the methods employed in field sampling and laboratory QA/QC to ensure validity of the analytical results.

3.5.1 QA/QC – Field sampling

Consistent with NAGD requirements, the following QA/QC measures were implemented:

- Collection of field replicate triplicate samples (i.e. three separate samples taken at the same location) at 10% of locations (refer to Table 3-3) to determine the variability of sediment chemical and physical characteristics.
- Collection of field split triplicates samples (one sample split into three separate containers) at 5% of locations to assess variation in results between laboratory analysis methods and processes. Split triplicates are created by thoroughly mixing sediment from a single location, then splitting the sediment into three different containers. One of the three (triplicate) samples is sent to a second (reference) laboratory (i.e. SGS) for analysis. All field split triplicate samples (refer to Table 3-3) were 'blind' labelled in the field with QC field numbers, which do not relate to sampling location names (e.g. D1, D2, etc.)
- Comparison of results of field quality control split replicate and field triplicate samples against NAGD Screening Levels.

QA/QC during field work was ensured by:

- Using suitably qualified environmental staff and support personnel experienced in grab sampling, field supervision and sediment logging.
- Sample homogenisation was performed by hand using powderless nitrile gloves within large stainless-steel mixing bowls, with one bowl dedicated to a single horizon.
- Samples for chemical analysis were contained with zero headspace in appropriately cleaned, pre-treated and labelled glass jars with Teflon lined lids that were provided by the analytical laboratory.
- Samples for physical analysis were contained in resealable (i.e. zip lock) plastic bags provided by the analytical laboratory.
- Keeping samples cool with ice in eskies during sampling and following collection. At the
 completion of each sampling trip, samples were kept cool (4°C) by refrigeration prior to
 laboratory dispatch. During transport samples were stored in eskies with ice packs until
 received by the laboratory and refrigerated until analysed.
- Transportation of samples under chain of custody documentation.
- All sampling equipment, including core tray and mixing bowls were decontaminated between sampling locations via a decontamination procedure involving a wash with ambient sea water and a laboratory grade detergent (Decon 90), and successive rinsing with deionised water.

3.5.2 QA/QC – Laboratory Analysis

A validation of the analytical data was undertaken in accordance with the NAGD Appendix A confirm that the data quality was suitable for undertaking an assessment to characterise material proposed for dredging and disposal. This validation included a consideration of results for laboratory blanks, standards, spikes, duplicate samples and surrogate recovery. A summary of the outlier results are presented in Section 4.5, while the laboratory QA/QC certificates are provided in Appendix C.

The laboratories used for sediment sample analyses are NATA accredited for the methods used and are experienced in the analysis of marine sediments. Laboratory QA/QC procedures were carried out in accordance with the requirements of the NAGD Appendix F including:

- laboratory blanks
- laboratory control sample
- matrix spikes
- laboratory duplicates
- surrogate recovery.

Laboratory blanks are samples submitted by the laboratory during sample analysis to assist in identifying any cross contamination of samples during laboratory preparation, extraction or analysis. Analysis of laboratory blank samples should result in a concentration not exceeding the LOR for a particular contaminant.

Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes to monitor method precision and accuracy independent of sample matrix. Recovery limits are based on statistical evaluation of processed LCS.

Matrix spikes are undertaken by the laboratory to identify the amount of interference from the sediment matrix on contaminant recovery. Samples collected from the field are split from the base sample and spiked with a known contaminant concentration. The percent recovery of the contaminant is then calculated. The purpose of this is to monitor potential matrix effects on analyte recoveries.

Laboratory duplicates determine the precision of analysis performed by the laboratory by the calculation of the RPD. The RPD is calculated based on a comparison of an intra-laboratory split of the sample material with results representing the relative percent difference (%RPD) between the two sample concentrations for a specific contaminant.

Surrogate recovery is undertaken by "spiking" a sample with a chemical similar to the contaminant and assessing its recovery after analysis. If a high percentage of the surrogate is recovered (75%-125% under NAGD guidelines), it indicates that the laboratory analytical methods can accurately measure the contaminant of concern.

3.6 Data analysis

3.6.1 Phase II – Sediment analysis for total contaminant concentrations

Chemical concentration levels for sediments were compared against the screening levels listed in Appendix A – Table 2 of the NAGD, to assess whether the sediment is suitable for placement at sea or if further testing is required (e.g. elutriate, bioavailability and/or direct toxicity assessment).

The assessment against NAGD criteria involved the comparison of concentrations at the 95% Upper Confidence Limit (UCL) of the mean to the NAGD screening levels. Detections for organic parameters were normalised to % TOC where the recorded TOC value was within the range of 0.2 – 10%. If TOC values were outside this range, then the highest or lowest of the 0.2 – 10% range will be adopted as appropriate. For the purposes of calculation of normalised values and of 95% UCLs, values below detection limit were set to one-half of the laboratory LOR in accordance with NAGD recommendations. For organic concentrations below detection, the half detection levels were not normalised to % TOC. Means, standard deviations and 95% UCLs were calculated for each of the dredge areas. Means and 95% UCLs were not calculated for contaminant groups that were found to have concentrations below detection levels at all sampling locations.

The methods used to calculate the 95% UCLs were based on the methods required in Appendix A of the NAGD (P38, Comparison of Data to Screening Levels) as described below.

Normality of datasets were determined using Shapiro-Wilks test and quantile-quantile plots in ProUCL Version 5 developed by the United States Environmental Protection Agency (USEPA 2016). Datasets were determined as being either normal or log-normal, or neither in their distributions. Normal datasets were analysed using the 1-tailed student's t UCL. Log-normal datasets were analysed using non-parametric jacknife analysis as recommended in the NAGD. Datasets that were neither normal nor log-normally distributed were also analysed using non-parametric jacknife analysis.

The NAGD (2009) states that if the 95%UCL values for all substances are below relevant screening levels, it is unlikely that contaminant substance concentrations in the sediment will have an adverse effect on organisms living in or on that sediment. Sediments are therefore considered non-toxic and there are no chemical obstacles to unconfined ocean placement.

3.6.2 Phase III – Elutriate analysis

Phase III elutriate analysis is undertaken using sediments prepared in a 1:4 suspension of laboratory prepared seawater standard. Elutriate analysis is required when primary concentrations of contaminants exceed the NAGD screening criteria during the Phase II assessment. The elutriate concentrations (or concentrations at the 95th percentile for the relevant dredge area) are then compared against the relevant toxicant trigger level in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC/ARMCANZ, 2000) and / or the Great Barrier Reef Marine Water Quality Guidelines (GBRWQG, 2010).

This sediment characterisation study includes Phase III elutriate analysis, the results of which are provided in Section 4.2.2.5.

3.6.3 Phase III – Bioavailability analysis

This analysis was not required.

3.6.4 Phase IV – Toxicity testing

This analysis was not required.

4 Results

This section presents the findings from the field investigation undertaken, including the sediment textures encountered (i.e. physical characteristics) and a summary of laboratory data. Sediment logs and photographs are presented in Appendix B, while all chemical summaries of results are presented in tabulated form below. The laboratory reports and QA/QC certificates as well as CoC documentation are provided in Appendix C.

Note the area surrounding sampling site H-3 will not be dredged and the results from this site are used to monitor historical contamination at the location. Results from this site are presented where applicable but excluded from all statistical analysis. This is an approach that is consistent with previous investigations.

4.1 Channel and Swing Basin

4.1.1 Physical characteristics

4.1.1.1 Particle Size Distribution

Sediments within the Channel and Swing Basin are a mixture of textures ranging from silty sand to sandy clays. Sand is located near the Port entrance (SB45), adjacent to the Berth 4 (SB50) and adjacent to Berth 1 (SB02). Samples SB45 and SB02 also contained gravel. A comparison of the mean PSD values suggests that most sediments contain sand (42%), followed by silt (31%) then clay (23%). A summary of PSD results for the Channel and Swing Basin are presented in Table 4-1 and Figure 4-1.

The PSD results from the triplicate site (SB02 T1, T2 and T3) indicates spatial variation in the percentage of gravel, sand and clay betweenT1, T2 and T3 samples.

4.1.1.2 Settling rate

Settling rates are provided in Table 4-1. This indicates that SB45 (silty sand) had the fastest settling rate and SB79 (i.e. sandy silty clay) had the slowest.

Maintenance Dredging Sediment Characterisation Report

Port of Mackay

Table 4-1 Particle size distribution of sediments across the Channel and Swing Basin

				Texture			Soil Particle		1	0% Setteability	20% Setteability						
Sample ID	Date Sampled	Clay	Silt	Sand	Gravel	Cobbles	Density	Underflow Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement	Clarity	Underflow Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement	Clarity
l	Inits	%	%	%	%	%	g/cm3	g/cm3	%	mm/min	mm/min		g/cm3	%	mm/min	mm/min	
	PQL	1	1	1	1	1	0.01	0.01	0.1	0.001	0.001		0.01	0.1	0.001	0.001	
Size (mm)		< 0.02	0.02-0.6	0.6-2	2-60	>60											
SB_02 (T1)	24/09/2018	16	13	52	19	<1	2.54	1.52	67.2	18	18	Clear	1.53	65.5	9.2	0.6	Clear
SB_02 (T2)	24/09/2018	13	30	42	15	<1	2.49	1.34	59.8	18.8	10.6	Clear	1.51	55	6.6	0.4	Clear
SB_02 (T3)	24/09/2018	31	26	37	6	<1	2.48	1.21	55.3	14.4	8.8	Clear	1.36	52.5	7	6.4	Clear
SB_16	24/09/2018	17	75	8	<1	<1		1.11	53	15.4	8	Clear	1.13	49.1	2.2	0.067	Clear
SB_45	24/09/2018	5	6	86	3	<1	2.59	1.5	66.6	26	19.6	Clear	1.69	59.2	15.4	6	Clear
SB_52	24/09/2018	34	42	24	<1	<1		1.04	37	4.6	0.058	Clear	1.14	19.8	0.05	0.008	Clear
SB_79	24/09/2018	36	41	23	<1	<1	2.5	1.18	23.4	2.4	0.108	Clear	1.16	23	0.05	0.006	Clear
SB_40	24/09/2018	40	43	16	1	<1	2.65	1.12	19.8	0.267	0.03	Clear	1.13	23.2	0.017	0.01	Clear
SB_50	24/09/2018	4	1	95	<1	<1	2.63	1.54	59.1	24.4	1.8	Clear	1.49	58.4	14.4	0.2	Clear
SB_58	24/09/2018	36	30	34	<1	<1	2.61	1.21	25.8	2.2	0.067	Clear	1.18	24.1	0.016	0.016	Clear
Mean		23	31	42	9	<1	2.56	1	47	13	7		1	43	5	1	
H-3	25/09/2018	26	14	60	<1	<1	2.52	1.21	30.6	1.8	0.083	Clear	1.32	36.1	1	0.025	Clear



Figure 4-1 Particle size distribution of sediments in Channel and Swing Basin

4.1.2 Chemical characteristics

The results of chemical analyses (dry weight) for sediments in Channel and Swing Basin are summarised below. This summary includes a comparison against NAGD screening levels in Table 2 of Appendix A. A tabulated summary of the chemical analysis is provided in Table 4-2. Primary laboratory reports are provided in Appendix C.

4.1.2.1 Metals and Metalloids

Metals and metalloid concentrations were below the respective NAGD Screening Levels in all SB samples. This was similarly the case for sample H-3.

4.1.2.2 Organotins

There are no NAGD screening criteria for MBT or DBT. Concentrations of these organotin compounds were below the LOR. Concentrations of TBT were also below the laboratory LOR and therefore below the NAGD screening level of 9μ gSn/kg.

A normalised concentration of TBT (229.87 μ gSn/kg) was detected in sample H-3. This is greater than the NAGD screening level of 9 μ gSn/kg. As the area surrounding H-3 will not be dredged it has been excluded from the statistical analysis.

Table 4-2 Summary of chemical analysis results for Channel and Swing Basin

Sample ID	Units	PQL	NAGD	NAGD Screening	H-3	SB_02 (T1)	SB_16	SB_40	SB_45	SB_50	SB_52	SB_58	SB_79	Mean/	Standard	95% UCL	Normal (N) Log-normal (L)
Date Sampled			PQL	Level	25/09/18	24/09/18	24/09/18	24/09/18	24/09/18	24/09/18	24/09/18	24/09/18	24/09/18	Geomean	Deviation		Neither (X)
Misc																	
% Moisture	%	1	0.1	-	52.3	34.2	67.2	64.4	35.3	21	63.1	58.5	59.7	50.4	17.5		
Total Organic Carbon	%	0.02	0.1	-	0.77	0.54	1.57	1.23	1.4	0.22	1.11	1.22	1.08	1.0	0.4		
Metals and Metalloids																	
Arsenic, As	mg/kg	1	1	20	7.3	13.6	8.05	6.86	5.12	3.93	6.7	5.72	6.39	7.0	2.9	9.0	N
Cadmium, Cd	mg/kg	0.1	0.1	1.5	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Chromium, Cr	mg/kg	1	1	80	16	8.4	25.2	21.6	7.9	3.9	21.9	16.9	21	15.9	8.0	21.1	N
Copper, Cu	mg/kg	1	1	65	140	9	16.5	14.6	5.4	2.7	16.2	12.2	15.1	11.5	5.2	15.0	N
Lead, Pb	mg/kg	1	1	50	27.7	6.6	15.3	14.2	5.8	3.2	13.8	11	11.2	10.1	4.4	13.1	N
Mercury, Hg	mg/kg	0.01	0.01	0.15	0.03	<0.01	0.04	0.02	<0.01	<0.01	0.02	0.02	0.02	0.02	0.01	0.02	N
Nickel, Ni	mg/kg	1	1	21	8.4	8	14.4	11.8	4.5	2.9	11.9	9.4	11.8	9.3	4.0	12.0	N
Zinc, Zn	mg/kg	1	1	200	165	18.6	46.1	39.9	17	12.7	43.1	33.6	40.8	31.5	13.3	40.4	N
Organotins																	
Monobutyltin - Phase II	μg Sn/kg	1	1	-	18	<1	<1	<1	<1	<1	<1	<1	<1				
Normalised to % TOC	μg Sn/kg		-	-	23.38												
Dibutyltin - Phase II	μg Sn/kg	1	1	-	50	<1	<1	<1	<1	<1	<1	<1	<1				
Normalised to % TOC	μg Sn/kg		-	-	64.94												
Tributyltin - Phase II	μg Sn/kg	0.5	1	-	177	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5				
Normalised to % TOC	μg Sn/kg		-	9	229.87												
Notes																	
Note	When calcu	ulating	averages	and 95%UCLs,	values below	detection f	or individual	sample resu	lts were set t	to half the d	etection leve	els (consister	nt with the N	IAGD).			
PQL	Practical Q	uantitat	tion Limit														
Sample ID	Sample loc	ation n	umbers														
ND	Insufficient	data															
	No guideli	nes leve	els (i.e. Sci	eening or Max	kimum Levels	set in NAG	D for given p	oarameter, o	r no analysis	undertaken	for a given :	sample					
	Value exce	eds NA	GD or agı	eed local scre	ening level												
Normalised to % TOC	Normalised	d to % T	OC, over	the range of T	OC from 0.2	to 10%											
	Not tested																
#	Average of	f four fie	eld replac	ate samples													

4.2 Tug Berth

4.2.1 Physical characteristics

4.2.1.1 Particle Size Distribution

Sediment textures within the Tug Berth are generally evenly distributed within the samples with the majority comprised of silt (45%) and clay (39%). However, there is a higher portion of sand in sample TB02 (29%) and TB05 (24%). A summary of PSD results for the Tug Berth is presented in Table 4-3 and Figure 4-2.

4.2.1.2 Settling rate

Settling rates are provided in Table 4-3. This indicates that settling rates are similar, however, the fastest settling rate was recorded for sample TB05 and the slowest for TB29, TB12, TB26. This is indicative of the proportion of sand that contributes to faster settling rates.

Table 4-3 Particle size distribution of sediments across the Tug Berth

Sample ID	Date Sampled	Texture					Soil Particle	10% Setteability					20% Setteability				
		Clay	Silt	Sand	Gravel	Cobbles	Density	Underflow Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement	Clarity	Underflow Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement	Clarity
Units		%	%	%	%	%	g/cm3	g/cm3	%	mm/min	mm/min		g/cm3	%	mm/min	mm/min	
PQL		1	1	1	1	1	0.01	0.01	0.1	0.001	0.001		0.01	0.1	0.001	0.001	
Size (mm)		< 0.02	0.02-0.6	0.6-2	2-60	>60											
TB_02	25/09/2018	34	36	29	1	<1		1.06	33.7	2	0.05	Clear	1.14	21.5	0.05	0.003	Clear
TB_18	25/09/2018	34	53	13	<1	<1	2.55	1.07	35.4	0.8	0.15	Clear	1.15	21.3	0.017	0.006	Clear
TB_29	25/09/2018	36	53	11	<1	<1		1.07	32.8	0.267	0.075	Clear	1.11	19.6	0.01	0.01	Clear
TB_05 (T1)	25/09/2018	40	34	24	2	<1	2.55	1.16	26.1	2.8	0.075	Clear	1.15	24.1	0.017	0.002	Clear
TB_12	25/09/2018	46	42	12	<1	<1	2.55	1.06	20	0.267	0.036	Clear	1.11	22.9	0.009	0.009	Clear
TB_26	25/09/2018	44	52	4	<1	<1	2.41	1.05	20.2	0.267	0.032	Clear	1.14	21.5	0.017	0.004	Clear
Mean		39	45	16	2	<1	2.52	1.08	28.0	1.1	0.070		1.13	21.8	0.02	0.006	

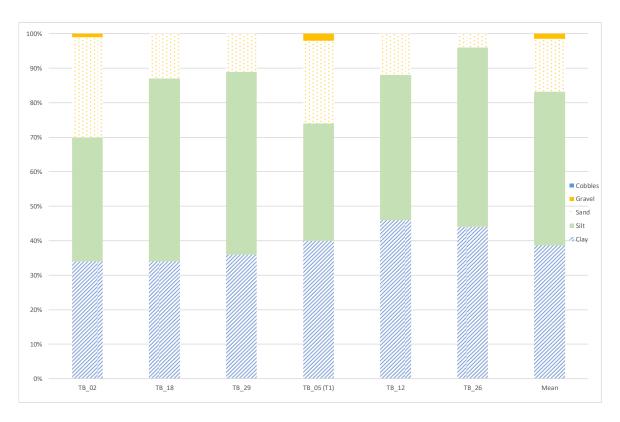


Figure 4-2 Particle size distribution of sediments in the Tug Berth

4.2.2 Chemical characteristics

The results of chemical analyses for sediments in the Tug Berth are summarised below. This summary includes a comparison against NAGD screening levels in Table 2 of Appendix A. A tabulated summary of the chemical analysis is provided in Table 4-2. Primary laboratory reports are provided in Appendix C.

4.2.2.1 Metals and Metalloids

Metals and metalloid concentrations were below the respective NAGD Screening Level for all Tug Berth samples.

4.2.2.2 Organotins

Concentrations of MBT were below the laboratory LOR. There are no NAGD Screening Levels for comparison.

Low level concentrations of DBT were detected in three samples (TB02, TB05, TB18), however there are no NAGD Screening Levels for comparison. The remaining samples had DBT concentrations below the laboratory LOR.

Concentrations of TBT were detected in all Tug Berth samples. When normalised these TBT concentrations were below the NAGD screening level of 9 μ g Sn/kg. The 95% UCL of the mean for the normalised dataset was also below the NAGD screening criteria of 9μ gSn/kg.

4.2.2.3 TPH, TRH and BTEX

Concentrations of TPH and TRH were detected in all Tug Berth samples. However, only total TPH can be compared to a NAGD screening level of 500mg/kg. Concentrations of total TPH in all samples collected were below the NAGD screening level.

Concentrations of BTEX in all samples analysed were below the LOR.

4.2.2.4 PAH

Concentrations of PAHs were detected in all samples. However, once normalized to %TOC and outlier concentrations identified (refer to Section 5.3) and rectified, PAH concentrations in all samples were below NAGD Screening Level for total PAH (10,000µg/kg). The 95%UCL of the mean (3,486µg/kg) was also below the NAGD Screening Level.

4.2.2.5 PAH Phase III sampling

A decision to undertake Phase III elutriate analysis on sample TB_02 was made based on a PAH concentration identified through preliminary laboratory analysis; however subsequent analysis showed this result to be an outlier (refer to Section 5.3) which did not require elutriate analysis. Due to timing constraints the elutriate analysis was undertaken in parallel with triplicate analysis, with the triplicate analysis results indicating that elutriate analysis was not required. Nonetheless

the elutriate results are summarized in Table 4-4 and indicate concentrations of PAHs in elutriates were below the respective LORs. Due to the results of triplicate analysis (refer to Section 5.3), Phase III results are not considered further.

4.2.2.6 Organochloride pesticides

Concentrations of OCPs in all samples analysed were below the LOR and therefore below the NAGD screening levels for the various OCP compounds.

4.2.2.7 Radionuclides

Concentrations of the gross alpha radionuclides ranged from less than the laboratory of 500 Bq/kg DW in TB12 and TB18 to 1100 Bq/kg DW in TB29. These concentrations are below the NAGD Screening Level of 35,000 Bq/kg DW (i.e. 35 Bq/g DW). The 95% UCL of the mean (916.6Bq/kg DW) was also below the NAGD Screening Level.

Concentrations of gross beta radionuclides ranged from less than the laboratory of 500 Bq/kg DW in TB05 and TB18 to 560 Bq/kg DW in TB26. These concentrations are below the NAGD Screening Level of 35,000 Bq/kg DW (i.e. 35 Bq/g DW). The 95% UCL of the mean (575.4Bq/kg DW) was also below the NAGD Screening Level.

The sum of radionuclides ranged from less than the laboratory of 500 Bq/kg DW in TB18 to 1630 Bq/kg DW in TB29. These concentrations are below the NAGD Screening Level of 35,000 Bq/kg DW (i.e. 35 Bq/g DW). The 95% UCL of the mean (1418Bq/kg DW) was also below the NAGD Screening Level.

Table 4-4 Summary of chemical analysis results for Tug Berth

				NAGD	ANZG,	TB 02										Normal (N)
Sample ID	Units	PQL	NAGD	Screening	2018 95%		TB_02	TB_05 (T1)	TB_12	TB_18	TB_26	TB_29	Mean/	Standard	95%	Log-normal (L)
Date Sampled			PQL	Level			25/09/18	25/09/18	25/09/18	25/09/18	25/09/18	25/09/18	Geomean	Deviation	UCL	Neither (X)
Misc																
% Moisture	%	1	0.1	-	-		63.7	62	67.3	62.4	65.7	65.8	64.5	2.1		
Total Organic Carbon	%	0	0.1	-	-		0.8	1.18	0.99	1.15	1.05	0.92	1.0	0.1		
Metals and Metalloids	1				1		1	1			1	1				
Arsenic, As	mg/kg	1	1	20	-		7.48	7	8.27	7.24	7.83	8.01	7.6	0.5	8.0	N
Cadmium, Cd	mg/kg	0.1	0.1	1.5	-		<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	00.7	0.5	0.5.7	
Chromium, Cr	mg/kg	1	1	80	-		26.1	19.5	24.6	22.6	23.2	25.9	23.7	2.5	25.7	N
Copper, Cu Lead, Pb	mg/kg mg/kg	1	1	65 50	-		26.2 15.3	20.3 12.6	22.3 15.3	23.4 14.4	19.5 14	23.4 15.6	22.5 14.5	2.4 1.1	24.5 15.5	N N
Mercury, Hg	mg/kg	0	0.01	0.15	_		0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.004	0.03	X
Nickel, Ni	mg/kg	1	1	21	-		15.6	11.1	14.4	13.2	13.6	14.7	13.8	1.6	15.1	N
Zinc, Zn	mg/kg	1	1	200	-		60.2	48.9	55.3	51.9	49.9	54.5	53.5	4.1	56.9	N
Organotins							1						ı	'		
Monobutyltin - Phase II	μg Sn/kg	1	1	-	-		<1	<1	<1	<1	<1	<1				
Normalised to % TOC	μg Sn/kg		-	-	-											
Dibutyltin - Phase II	μg Sn/kg	1	1	-	-		1	1	<1	1	<1	<1				
Normalised to % TOC	μg Sn/kg		-	-	-		1.25	0.85		0.87			1.0	0.2	1.4	N
Tributyltin - Phase II	μg Sn/kg	0.5	1	-	-		2.5	5.3	0.8	3.3	1.1	2.3				
Normalised to % TOC	μg Sn/kg		-	9	-		3.13	4.49	0.81	2.87	1.05	2.50	2.5	1.4	3.6	N
TPH C6-C9	mg/kg	3	10	l -			<3	<3	<3	<3	<3	<3				
TPH C10-14	mg/kg	3	10	<u>-</u>	-		5	6	4	4	6	6	5.2	1.0	6.0	N
TPH C15-28	mg/kg	3	50	_	_		19	42	14	18	28	23	24.0	10.0	32.2	N
TPH C29-36	mg/kg	5	50	-	-		12	41	12	14	23	18	20.0	11.1	29.2	N
Total TPH	mg/kg	3		550	-		36	89	30	36	57	47	49.2	21.8	67.1	N
TRH			<u> </u>				1						ı			
C6 - C10 Fraction	mg/kg	3	-	-	-		<3	<3	<3	<3	<3	<3				
C6 - C10 Fraction - BTEX	mg/kg	3	-	-	-		<3.0	<3.0	<3.0	<3.0	<3.0	<3.0				
>C10 - C16 Fraction	mg/kg	3	-	-	-		5	7	4	4	6	6	5.3	1.2	6.3	N
>C16 - C34 Fraction >C34 - C40 Fraction	mg/kg	3	-	-	-		25	64	22	26	40	33	35.0	15.6	47.9	N
>C10 - C40 Fraction (sum)	mg/kg mg/kg	5 3	-	-	-		9 39	30 101	12 38	12 42	17 63	15 54	15.8 56.2	7.5 24.0	22.0 75.9	N N
>C10 - C16 Fraction-			_	_												
Naphthalene	mg/kg	3	-	-	-		5	7	4	4	6	6	5.3	1.2	6.3	N
BTEXN		1									•					
Benzene	mg/kg	0.2	-	-	-		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
Toluene	mg/kg	0.2	-	-	-		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
Ethylbenzene	mg/kg	0.2	-	-	-		< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2				
meta- & para-Xylene	mg/kg	0.2	-	-	-		<0.4 <0.2	<0.4 <0.2	<0.4 <0.2	<0.4 <0.2	<0.4 <0.2	<0.4 <0.2				
ortho-Xylene Total Xylenes	mg/kg mg/kg	0.2	-	-	-		<0.5	<0.5	<0.5	<0.2	<0.2	<0.5				
Sum of BTEX	mg/kg	0.2	200	_	_		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
Naphthalene	mg/kg	0.2	-	-	-		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
РАН																
Naphthalene	μg/kg	5	5	-	70*	<1	4.125	20	14	13	13	12				
Normalised to % TOC	μg/kg			-			5.16	16.95	14.14	11.30	12.38	13.04	12.2	3.9	15.4	N
2-Methylnaphthalene	μg/kg	5	5	-			7	<5	<5	<5	<5	<5	0 -	0.5	0 :	
Normalised to % TOC	μg/kg	1	5	-		.1	8.75 20.375	2.50	2.50 <5	2.50 <5	2.50 <5	2.50	3.5	2.6	8.1	Х
Acenaphthylene Normalised to % TOC	μg/kg μg/kg	4	Э	-		<1	25.47	45 38.14	< 5 2.50	<5 2.50	2.50	<5 2.50	12.3	15.7	25.1	Х
Acenaphthene	μg/kg μg/kg	4	5	-		<1	13.625	4	<5	<5	<5	<5	12.0	13.1	٠.١	^
Normalised to % TOC	μg/kg	7	,	-		,,,	17.03	3.39	2.50	2.50	2.50	2.50	5.1	5.9	9.9	X
Fluorene	μg/kg	4	5	-		<1	32.375	20	<5	<5	<5	<5				
Normalised to % TOC	μg/kg			-			40.47	16.95	2.50	2.50	2.50	2.50	11.2	15.4	23.9	Х
Phenanthrene	μg/kg	4	5	-	0.6*	<1	537.875	213	8	20	10	9				
Normalised to % TOC	μg/kg			-			672.34	180.51	8.08	17.39	9.52	9.78	149.6	264.9	367.5	N
Anthracene	μg/kg	4	5	-	0.1*	<1	95.375	85	<5	6	<5	<5	_			
Normalised to % TOC	μg/kg		_	-	<i>p</i> 1	-	119.22	72.03	2.50	5.22	2.50	2.50	34.0	50.0	75.2	L
Fluoranthene	μg/kg	4	5	-	1*	<1	1542.875	456	15	60	17	15	400.5	764.6	1022.2	8.1
Normalised to % TOC	μg/kg	1	Г	-		21	1928.59	386.44 362	15.15	52.17 52	16.19	16.30	402.5	761.6	1029.0	N
Pyrene Normalised to % TOC	μg/kg μg/kg	4	5	-		<1	1035.375 1294.22	362 306.78	13 13.13	52 45.22	14 13.33	13 14.13	281.1	509.4	700.2	N
Benz(a)anthracene	μg/kg μg/kg	4	5	-		<1	492.875	240	7	30	8	8	۷۱.۱ ک	JUJ. 4	, UU.Z	í N
Normalised to % TOC	μg/kg	-	,	_		,,,	616.09	203.39	7.07	26.09	7.62	8.70	144.8	243.3	345.0	N

Sample ID			NAGD	NAGD	ANZG,	TB_02	TB 02	TB 05 (T1)	TB 12	TB 18	TB 26	TB 29	Mean/	Standard	95%	Normal (N)
Sample 10	Units	PQL		Screening	2018 95%	Elutriate	10_02	16_05 (11)	10_12	ID_IO	16_20	10_29		Deviation	UCL	Log-normal (L)
Date Sampled			PQL	Level	Protection	25/09/18	25/09/18	25/09/18	25/09/18	25/09/18	25/09/18	25/09/18	Geomean	Deviation	UCL	Neither (X)
Chrysene	μg/kg	4	5	-		<1	407.875	189	8	25	8	8				
Normalised to % TOC	μg/kg			-			509.84	160.17	8.08	21.74	7.62	8.70	119.4	200.4	284.2	N
Benzo(b+j)fluoranthene	μg/kg	4	5	-		<1	237.875	200	10	33	9	10				
Normalised to % TOC	μg/kg			-			297.34	169.49	10.10	28.70	8.57	10.87	87.5	120.3	186.4	N
Benzo(k)fluoranthene	μg/kg	4	5	-		<1	117.125	99	<5	13	<5	<5				
Normalised to % TOC	μg/kg			-			146.41	83.90	2.50	11.30	2.50	2.50	41.5	60.5	91.3	N
Benzo(e)pyrene	μg/kg	4	5	-			421	109	6	19	5	6				
Normalised to % TOC	μg/kg		-	-			526.25	92.37	6.06	16.52	4.76	6.52	108.7	207.3	279.3	L
Benzo(a)pyrene	μg/kg	4	5	-	0.1*	<0.5	132.125	218	7	28	7	7				_
Normalised to % TOC	μg/kg		_	_	***		165.16	184.75	7.07	24.35	6.67	7.61	65.9	84.9	135.8	N
Perylene	μg/kg	4	5	_			168	88	12	21	12	12	00.0	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Normalised to % TOC	μg/kg	·		_			210.00	74.58	12.12	18.26	11.43	13.04	56.6	79.0	121.6	N
Benzo(g.h.i)perylene	μg/kg	4	5	_		<1	37.125	115	7	22	7	7	30.0			
Normalised to % TOC	μg/kg	7	3	_		``	46.41	97.46	7.07	19.13	6.67	7.61	30.7	36.1	60.4	N
Dibenz(a.h)anthracene	μg/kg	4	5	_		<1	13.375	26	<5	6	<5	<5	30.7	30.1	00.4	IN.
Normalised to % TOC		7	J	_		` '	16.72	22.03	2.50	5.22	2.50	2.50	8.6	8.6	15.7	N
Indeno(1.2.3.cd)pyrene	μg/kg μg/kg	4	5	-		<1	43.375	107	6	5.22 19	2.50 6	6	0.0	0.0	13.1	IN
		4	5	-		< 1				-	5.71	6.52	20.0	25.1	F0 0	NI
Normalised to % TOC	μg/kg	Г	Г	-			54.22 13	90.68	6.06	16.52 8	5.7 I <5	6.52 <5	30.0	35.1	58.8	N
Coronene	μg/kg	5	5	-				27	<5	-			0.0	0.7	16.1	N.I.
Normalised to % TOC	μg/kg		400	-		0.5	16.25	22.88	2.50	6.96	2.50	2.50	8.9	8.7	16.1	N
Sum of PAHs	μg/kg	4	100	10000		<0.5	4900.375	2620	113	375	116	113				
Normalised to % TOC	μg/kg			10000			6125.47	2220.34	114.14	326.09	110.48	122.83	1503.2	2410.0	3486.0	N
Organochlorine Pesticides	•					1	1			1			1			
Aldrin	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
alpha-BHC	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
beta-BHC	μg/kg	0.5	-	-	-		<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
delta-BHC	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50				
4.4`-DDD	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
4.4`-DDE	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50				
4.4`-DDT	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50				
Sum of DDD + DDE + DDT	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
Dieldrin	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50				
alpha-Endosulfan	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
beta-Endosulfan	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
Endosulfan sulfate	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
Endosulfan (sum)	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50				
Endrin	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50				
Endrin aldehyde	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50				
Endrin ketone	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	< 0.50	<0.50				
Heptachlor	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50				
Heptachlor epoxide	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50				
Hexachlorobenzene (HCB)	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50				
gamma-BHC	μg/kg	0.3	-	-	-		<0.25	<0.25	<0.25	<0.25	<0.25	<0.25				
Methoxychlor	μg/kg	0.5	-	-	-		< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50				
cis-Chlordane	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	<0.50				
trans-Chlordane	μg/kg	0.5	-	-	-		< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50				
Total Chlordane (sum)	μg/kg	0.5	-	-	-		< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50				
Oxychlordane (Sdrii)	μg/kg	0.5	-	-	-		< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50				
Sum of Aldrin + Dieldrin	μg/kg	0.5	-	-	-		< 0.50	<0.50	<0.50	<0.50	<0.50	< 0.50				
Radionuclides	~9/ N9	0.5						.0.50		.0.50						
Radionacifices	Ba/lia															
Gross alpha	Bq/kg DW	500	-		-		640	640	< 500	<500	920	1100	825.0	225.9	916.9	N
Gross beta	Bq/kg DW	500	-	35000	-		570	<500	530	<500	560	530	547.5	20.6	575.4	N
																<u> </u>
Sum of radionuclides	Bq/kg	500	-		-		1210	640	530	<500	1480	1630	1098.0	493.4	1418.0	N
Notes	DW						J	1					I			

Note When calculating averages and 95%UCLs, values below detection for individual sample results were set to half the detection levels (consistent with the NAGD).

PQL Practical Quantitation Limit
Sample ID Sample location numbers
ND Insufficient data

Notes

No guidelines levels (i.e. Screening or Maximum Levels) set in NAGD for given parameter, or no analysis undertaken for a given sample

Value exceeds NAGD or agreed local screening level

Normalised to % TOC Normalised to % TOC, over the range of TOC from 0.2 to 10%

Not tested

Average of four field replacate samples

Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments (ANZG, 2018) 95% Species Protection (μg/L)

PAH concentrations for TB_02 are the average of triplicate analysis. Concentrations were detected original, however, all triplicate samples returned results below the laboratory LOR PAH elutriates results for TB02 are reported in $\mu g/L$

4.3 Berth Pockets

4.3.1 Physical characteristics

4.3.1.1 Particle Size Distribution

Sediment textures within the Berth Pockets are primarily comprised of silt and clay with a combined fine content of 79%. However, each sample contained portions of sand greater than 10%. Samples with sand portions greater than 25% include B1_02 T1, B5_10, B5_08 and B1_07. A summary of PSD results for the Berth Pockets is presented in Table 4-5 and Figure 4-3.

The triplicate samples indicate there is some variability in sediment textures, with the T1 sample showing the most variability with the highest portion of sand.

4.3.1.2 Settling rate

Settling rates are provided in Table 4-5. This indicates that settling rates are similarly slow in all samples except for B1_02 T2 and T3. These samples have the least percentage sand and have even slower settling rates.

Table 4-5 Particle size distribution of sediments across the Berth Pockets

				Texture			Soil Particle		1	0% Setteability	,			2	0% Setteability		
Sample ID	Date Sampled	Clay	Silt	Sand	Gravel	Cobbles	Density (Clay/Silt/Sand)	Underflow Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement	Clarity	Underflow Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement	Clarity
l	Jnits	%	%	%	%	%	g/cm3	g/cm3	%	mm/min	mm/min		g/cm3	%	mm/min	mm/min	
	PQL	1	1	1	1	1	0.01	0.01	0.1	0.001	0.001		0.01	0.1	0.001	0.001	
Size (mm)		< 0.02	0.02-0.6	0.6-2	2-60	>60											
B1_02 (T1)	26/09/2018	28	35	36	1	<1		1.04	40.8	2.6	0.217	Clear	1.15	30.6	0.05	0.015	Clear
B1_02 (T2)	26/09/2018	23	66	11	<1	<1		1.05	30.8	0.333	0.027	Clear	1.11	24.9	0.033	0.009	Clear
B1_02 (T3)	26/09/2018	22	67	11	<1	<1		1.04	30.1	0.333	0.02	Clear	1.11	20.8	0.009	0.009	Clear
B3_14	26/09/2018	40	43	17	<1	<1		1.07	35.8	3.2	0.133	Clear	1.12	25	0.67	0.024	Clear
B4_01	26/09/2018	37	52	11	<1	<1		1.05	29.8	2.6	0.092	Clear	1.09	26.1	0.05	0.016	Clear
B5_10	26/09/2018	42	32	26	<1	<1		1.06	32.7	2.6	0.133	Clear	1.11	31.1	0.05	0.015	Clear
B5_08	26/09/2018	43	29	27	1	<1	2.62	1.19	25.5	2.8	0.058	Clear	1.15	24.9	0.016	0.016	Clear
B1_07	26/09/2018	46	24	27	3	<1	2.58	1.15	22.9	2	0.021	Clear	1.18	24.1	0.033	0.01	Clear
Mean		35	44	21	2	<1	2.60	1.08	31.1	2.1	0.088		1.13	25.9	0.11	0.014	

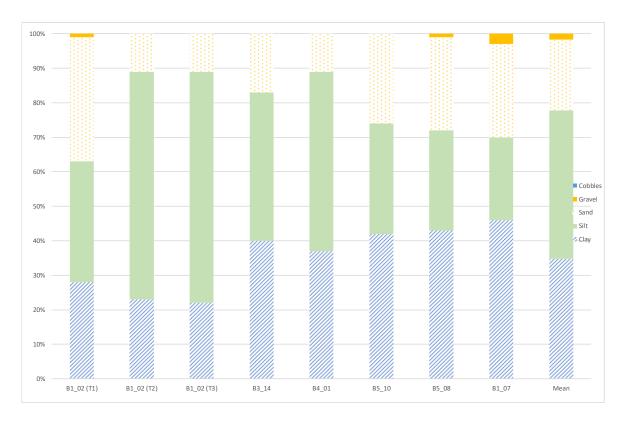


Figure 4-3 Particle size distribution of sediments in the Berth Pockets

4.3.2 Chemical characteristics

The results of chemical analyses for sediments in the Berth Pockets are summarised below. This summary includes a comparison against NAGD screening levels in Table 2 of Appendix A. A tabulated summary of the chemical analysis is provided in Table 4-6. Primary laboratory reports are provided in Appendix C.

4.3.2.1 Metals and Metalloids

Metals and metalloid concentrations were below the respective NAGD Screening Level for all Berth Pocket samples.

4.3.2.2 Organotins

There are no NAGD screening criteria for MBT or DBT. Concentrations of these organotin compounds were below the LOR.

Concentrations of TBT were below the LOR for all Berth Pocket samples except for B5_08 (1.4µgSn/kg, normalised 1.71µgSn/kg). These concentrations are below the NAGD screening level of 9µg Sn/kg. The 95% UCL of the mean was calculated, however, it is inaccurate as only one concentration above the LOR was detected. Nonetheless the 95%UCL of the mean (1.6µgSn/kg) is below the NAGD Screening Level.

4.3.2.3 TPH, TRH and BTEX

Concentrations of TPH and TRH were detected in most samples. However, only total TPH can be compared to a NAGD screening level of 500mg/kg. Concentrations of TPH in all samples collected were below the NAGD screening level.

Concentrations of BTEX in all samples analysed were below the LOR.

4.3.2.4 PAH

Concentrations of PAHs were detected in all samples, however, when normalised, summed and the 95%UCL calculated are below the NAGD screening criteria of 10,000µg/kg for total PAH.

Table 4-6: Summary of chemical analysis results for Berth Pockets

Sample ID	Units	PQL	NAGD PQL	NAGD Screening	B1_02 (T1)	B1_07	B3_14	B4_01	B5_08	B5_10	Mean/	Standard	95% UCL	Normal (N) Log-normal (L)
Date Sampled			PQL	Level	26/09/18	26/09/18	26/09/18	26/09/18	26/09/18	26/09/18	Geomean	Deviation		Neither (X)
Misc														
% Moisture	%	1	0.1	-	59.7	61.8	65	69.4	58.2	67.3	63.6	4.4		
Total Organic Carbon	%	0	0.1	-	0.75	0.73	0.98	1.2	0.82	0.88	0.9	0.2		
Metals and Metalloids	•						•							
Arsenic, As	mg/kg	1	1	20	7.94	6.8	8.42	8.96	6.98	8.05	7.9	0.8	8.5	N
Cadmium, Cd	mg/kg	0.1	0.1	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
Chromium, Cr	mg/kg	1	1	80	22	22.3	24.7	28.5	20.4	24.4	23.7	2.8	26.1	N
Copper, Cu	mg/kg	1	1	65	30.1	21.9	16	19.8	16.1	17.6	20.3	5.3	24.6	N
Lead, Pb	mg/kg	1	1	50	10.9	16	13	15.4	11.9	14.2	13.6	2.0	15.2	N
Mercury, Hg	mg/kg	0	0.01	0.15	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.004	0.025	Х
Nickel, Ni	mg/kg	1	1	21	12.2	13.1	13.6	16.1	12.2	14.5	13.6	1.5	14.9	N
Zinc, Zn	mg/kg	1	1	200	83	57.9	48.3	58.3	41.8	50	56.6	14.4	68.4	N
Organotins	•						•		•			•		
Monobutyltin - Phase II	μg Sn/kg	1	1	-	<1	<1	<1	<1	<1	<1				
Normalised to % TOC	μg Sn/kg		-	-										
Dibutyltin - Phase II	μg Sn/kg	1	1	-	<1	<1	<1	<1	<1	<1				
Normalised to % TOC	μg Sn/kg		-	-										
Tributyltin - Phase II	μg Sn/kg	0.5	1	-	< 0.5	<0.5	<0.5	<0.5	1.4	<0.5				
Normalised to % TOC	μg Sn/kg		-	9	0.25	0.25	0.25	0.25	1.71	0.25	0.5	0.6	1.6	Х
ТРН														
TPH C6-C9	mg/kg	3	10	-	<3	<3	<3	<3	<3	<3				
TPH C10-14	mg/kg	3	10	-	6	6	8	6	4	6	6.0	1.3	7.0	N
TPH C15-28	mg/kg	3	50	-	22	21	29	17	12	20	20.2	5.6	24.8	N
TPH C29-36	mg/kg	5	50	-	16	16	27	10	10	14	15.5	6.3	20.6	N
Total TPH	mg/kg	3		550	44	43	64	33	26	40	41.7	12.9	50.3	N
TRH							I			ı			'	
C6 - C10 Fraction	mg/kg	3	-	-	<3	<3	<3	<3	<3	<3				
C6 - C10 Fraction - BTEX	mg/kg	3	-	-	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0				
>C10 - C16 Fraction	mg/kg	3	-	-	6	6	8	6	4	6	6.0	1.3	7.0	N
>C16 - C34 Fraction	mg/kg	3	-	-	31	30	44	22	17	27	28.5	9.2	36.1	N
>C34 - C40 Fraction	mg/kg	5	-	-	10	12	19	8	8	10	11.2	4.1	14.6	N
>C10 - C40 Fraction (sum)	mg/kg	3	-	-	47	48	71	36	29	43	45.7	14.3	57.5	N
>C10 - C16 Fraction-		3			6	6	8	6	4	6	6.0	1.3	7.0	N
Naphthalene	mg/kg	3	-	-	O	0	O	O	4	0	6.0	1.5	7.0	IN
BTEXN														
Benzene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
Toluene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
Ethylbenzene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
meta- & para-Xylene	mg/kg	0.2	-	-	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4				
ortho-Xylene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
Total Xylenes	mg/kg	0.5	-	-	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5				
Sum of BTEX	mg/kg	0.2	200	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2				
Naphthalene	mg/kg	0.2	-	-	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2				
PAH														
Naphthalene	μg/kg	5	5	-	16	12	11	15	10	12				
Normalised to % TOC	μg/kg			-	21.33	16.44	11.22	12.50	12.20	13.64	14.6	3.8	17.7	N
2-Methylnaphthalene	μg/kg	5	5	-	<5	<5	<5	<5	<5	<5				
Normalised to % TOC	μg/kg			-										
Acenaphthylene	μg/kg	4	5	-	5	<5	<5	<5	<5	<5				
Normalised to % TOC	μg/kg			-	6.67	2.50	2.50	2.50	2.50	2.50	3.2	1.7	4.6	Х
Acenaphthene	μg/kg	4	5	-	14	<5	<5	<5	<5	<5				
Normalised to % TOC	μg/kg			-	18.67	2.50	2.50	2.50	2.50	2.50	5.2	6.6	16.9	Х
Fluorene	μg/kg	4	5	-	12	<5	<5	5	<5	<5				
	1 3. 3													
Normalised to % TOC	μg/kg			-	16.00	2.50	2.50	4.17	2.50	2.50	5.0	5.4	9.5	X
Normalised to % TOC Phenanthrene	_	4	5	-	16.00 99	2.50 10	2.50 7	4.17 10	2.50 13	2.50 9	5.0	5.4	9.5 71.9	X

Sample ID	Units	PQL	NAGD	NAGD Screening	B1_02 (T1)	B1_07	B3_14	B4_01	B5_08	B5_10	Mean/	Standard	95% UCL	Normal (N) Log-normal (L)
Date Sampled			PQL	Level	26/09/18	26/09/18	26/09/18	26/09/18	26/09/18	26/09/18	Geomean	Deviation		Neither (X)
Anthracene	μg/kg	4	5	-	12	7	<5	<5	<5	<5				
Normalised to % TOC	μg/kg			-	16.00	9.59	2.50	2.50	2.50	2.50	5.9	5.7	10.6	Х
Fluoranthene	μg/kg	4	5	-	210	18	10	19	28	14				
Normalised to % TOC	μg/kg			-	280.00	24.66	10.20	15.83	34.15	15.91	63.5	106.4	151.0	L
Pyrene	μg/kg	4	5	-	159	15	8	17	24	11				
Normalised to % TOC	μg/kg			-	212.00	20.55	8.16	14.17	29.27	12.50	49.4	80.0	115.2	L
Benz(a)anthracene	μg/kg	4	5	-	82	11	<5	10	18	6				
Normalised to % TOC	μg/kg			-	109.33	15.07	2.50	8.33	21.95	6.82	27.3	40.7	60.9	L
Chrysene	μg/kg	4	5	-	66	13	5	10	15	8				
Normalised to % TOC	μg/kg			-	88.00	17.81	5.10	8.33	18.29	9.09	24.4	31.6	50.4	L
Benzo(b+j)fluoranthene	μg/kg	4	5	-	58	9	6	11	18	8				
Normalised to % TOC	μg/kg			-	77.33	12.33	6.12	9.17	21.95	9.09	22.7	27.3	45.2	N
Benzo(k)fluoranthene	μg/kg	4	5	-	33	6	<5	6	9	<5				
Normalised to % TOC	μg/kg			-	44.00	8.22	2.50	5.00	10.98	2.50	12.2	15.9	25.3	L
Benzo(e)pyrene	μg/kg	4	5	-	32	6	<5	7	11	<5				
Normalised to % TOC	μg/kg			-	42.67	8.22	2.50	5.83	13.41	2.50	12.5	15.3	25.1	N
Benzo(a)pyrene	μg/kg	4	5	-	46	8	<5	9	15	5				
Normalised to % TOC	μg/kg			-	61.33	10.96	2.50	7.50	18.29	5.68	17.7	22.0	35.8	N
Perylene	μg/kg	4	5	-	21	12	11	16	15	13				
Normalised to % TOC	μg/kg			-	28.00	16.44	11.22	13.33	18.29	14.77	17.0	5.9	21.9	N
Benzo(g.h.i)perylene	μg/kg	4	5	-	26	6	<5	7	11	<5				
Normalised to % TOC	μg/kg			-	34.67	8.22	2.50	5.83	13.41	2.50	11.2	12.2	21.2	N
Dibenz(a.h)anthracene	μg/kg	4	5	-	7	5	<5	<5	<5	<5				
Normalised to % TOC	μg/kg			-	9.33	6.85	2.50	2.50	2.50	2.50	4.4	3.0	6.8	Х
Indeno(1.2.3.cd)pyrene	μg/kg	4	5	-	24	6	<5	7	10	<5				
Normalised to % TOC	μg/kg			-	32.00	8.22	2.50	5.83	12.20	2.50	10.5	11.1	19.7	N
Coronene	μg/kg	5	5	-	6	<5	<5	<5	<5	<5				
Normalised to % TOC	μg/kg			-	8.00	2.50	2.50	2.50	2.50	2.50	3.4	2.2	5.3	Х
Sum of PAHs	μg/kg	4	100	10000	928	144	58	149	197	86				
Normalised to % TOC	μg/kg			10000	1237.33	197.26	59.18	124.17	240.24	97.73	326.0	451.3	697.3	L
Notes														

Note When calculating averages and 95%UCLs, values below detection for individual sample results were set to half the detection levels (consistent with the NAGD).

PQL Practical Quantitation Limit
Sample ID Sample location numbers
ND Insufficient data

- No guidelines levels (i.e. Screening or Maximum Levels) set in NAGD for given parameter, or no analysis undertaken for a given sample

Value exceeds NAGD or agreed local screening level

Normalised to % TOC Normalised to % TOC, over the range of TOC from 0.2 to 10%

Not tested

Average of four field replacate samples

4.4 Dredge Material Placement Area

4.4.1 Physical characteristics

4.4.1.1 Particle Size Distribution

Sediment textures within the DMPA are comprised of sand and gravel with only 2% or less of silt and clays. A summary of PSD results for the DMPA is presented in Table 4-7 and Figure 4-4.

4.4.1.2 Settling rate

Settling rates are provided in Table 4-7. This indicates that settling rates are similarly fast due to high sand and gravel content.

Table 4-7 Particle size distribution of sediments across the DMPA

				Texture			Soil Particle		1	0% Setteability				2	0% Setteability		
Sample ID	Date Sampled	Clay	Silt	Sand	Gravel	Cobbles	Density	Underflow Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement		Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement	Clarity
l	Inits	%	%	%	%	%	g/cm3	g/cm3	%	mm/min	mm/min		g/cm3	%	mm/min	mm/min	
	PQL	1	1	1	1	1	0.01	0.01	0.1	0.001	0.001		0.01	0.1	0.001	0.001	
Size (mm)		< 0.02	0.02-0.6	0.6-2	2-60	>60											
SG_01	27/09/2018	1	2	30	67	<1		1.83	68.3	55.6	55.6	Clear	2.1	68.1	24.6	24.6	Clear
SG_02	27/09/2018	<1	1	63	36	<1	2.49	1.74	71.8	57	57	Clear	2.06	69.5	24.2	24.2	Clear
SG_03	27/09/2018	<1	1	66	33	<1	2.41	1.79	69.9	58	58	Clear	1.78	70.3	24.6	24.6	Clear
Mean		1	1	53	45	<1	2.45	1.79	70.0	56.9	56.9		1.98	69.3	24.47	24.5	

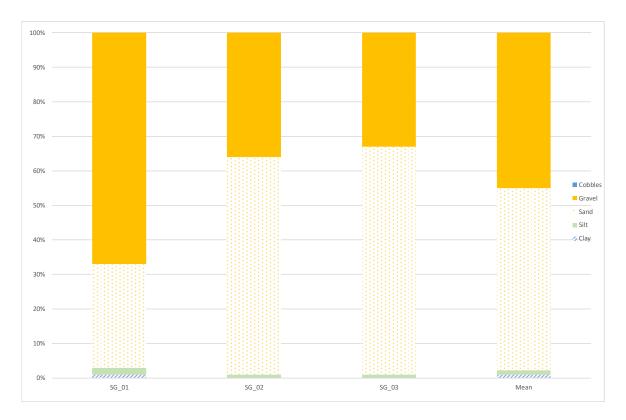


Figure 4-4 Particle size distribution of sediments in the DMPA

4.4.2 Chemical characteristics

The results of chemical analyses for sediments in the DMPA are summarised below. This summary includes a comparison against NAGD screening levels in Table 2 of Appendix A. A tabulated summary of the chemical analysis is provided in Table 4-8. Primary laboratory reports are provided in Appendix C.

Note that 95%UCLs of the mean values were not calculated as the sample size (i.e. three values) is too small to generate accurate results.

4.4.2.1 Metals and Metalloids

Metals and metalloid concentrations were below the respective NAGD Screening Level for all DMPA (SG) samples.

4.4.2.2 Organotins

All organotin compounds were less than the laboratory LORs, therefore concentrations of TBT are below the NAGD screening level of $9\mu gSn/kg$.

4.4.2.3 TPH, TRH and BTEX

Concentrations of TPH and TRH were detected in most samples. However, only total TPH can be compared to a NAGD screening level of 500mg/kg. Concentrations of TPH in all samples collected were below the NAGD screening level.

Concentrations of BTEX in all samples analysed were below the LOR.

4.4.2.4 PAH

Concentrations of PAHs were below the LOR in all reference samples collected, therefore the 95%UCL of the mean could not be calculated. Nonetheless, these concentrations were below NAGD screening criteria of 10,000µg/kg for total PAH.

Maintenance Dredging Sediment Characterisation Report

Table 4-8: Summary of chemical analysis results for DMPA sites

6 1 15				NAGD	00.04	66.00	66.00		6		Normal (N)
Sample ID	Units	PQL	NAGD PQL	Screening	SG_01	SG_02	SG_03	Mean/	Standard Deviation	95% UCL	Log-normal (L)
Date Sampled			T QL	Level	27/09/18	27/09/18	27/09/18	Geomean	Deviation		Neither (X)
Misc		_									
% Moisture	%	1	0.1	-	22	19.3	16.2	19.2	2.9		
Total Organic Carbon	%	0	0.1	-	0.24	0.2	0.19	0.2	0.03		
Metals and Metalloids											
Arsenic, As	mg/kg	1	1	20	5.62	6.69	8.64	7.0	1.5		
Cadmium, Cd	mg/kg	0.1	0.1	1.5	<0.1	<0.1	<0.1				
Chromium, Cr	mg/kg	1	1	80	4	2.2	2.6	2.9	0.9		
Copper, Cu	mg/kg	1	1	65	1.6	1.2	1.5	1.4	0.2		
Lead, Pb	mg/kg	1	1	50	2.7	2.2	2.4	2.4	0.3		
Mercury, Hg	mg/kg	0	0.01	0.15	<0.01	< 0.01	<0.01				
Nickel, Ni	mg/kg	1	1	21	2	1.4	1.7	1.7	0.3		
Zinc, Zn	mg/kg	1	1	200	5.3	3.4	6.2	5.0	1.4		
Organotins						•	•	•	•		
Monobutyltin - Phase II	μg Sn/kg	1	1	-	<1	<1	<1				
Normalised to % TOC	μg Sn/kg		-	-							
Dibutyltin - Phase II	μg Sn/kg		1	-	<1	<1	<1				
Normalised to % TOC		'	-		\ \ \ \	` '	` ' '				
	μg Sn/kg	0.5		-	0.5	0.5	0.5				
Tributyltin - Phase II	μg Sn/kg	0.5	1	-	<0.5	<0.5	<0.5				
Normalised to % TOC	μg Sn/kg		-	9							
TPH											
TPH C6-C9	mg/kg	3	10	-	<3	<3	<3				
TPH C10-14	mg/kg	3	10	-	<3	<3	<3				
TPH C15-28	mg/kg	3	50	-	7	<3	4	5.5	2.1		
TPH C29-36	mg/kg	5	50	-	7	<5	<5	7.0			
Total TPH	mg/kg	3		550	14	<3	4	9.0	7.1		
TRH											
C6 - C10 Fraction	mg/kg	3	-	-	<3	<3	<3				
C6 - C10 Fraction - BTEX	mg/kg	3	-	-	<3.0	<3.0	<3.0				
>C10 - C16 Fraction	mg/kg	3	-	-	<3	<3	<3				
>C16 - C34 Fraction	mg/kg	3	-	-	12	5	6	7.7	3.8		
>C34 - C40 Fraction	mg/kg	5	-	-	<5	<5	<5				
>C10 - C40 Fraction (sum)	mg/kg	3	-	-	12	5	6	7.7	3.8		
>C10 - C16 Fraction-	mg/kg	3	-	_	<3	<3	<3				
Naphthalene	9,9	J			.5	.5	.0				
BTEXN	1			ı		<u> </u>	ı	I	ı		
Benzene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
Toluene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
Ethylbenzene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
meta- & para-Xylene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
ortho-Xylene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
Total Xylenes	mg/kg	0.5	-	-	<0.5	<0.5	<0.5				
Sum of BTEX	mg/kg	0.2	200	-	<0.2	<0.2	<0.2				
Naphthalene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
PAH											
Naphthalene	μg/kg	5	5	-	<5	<5	<5				
Normalised to % TOC	μg/kg			-							
2-Methylnaphthalene	μg/kg	5	5	-	<5	<5	<5				
Normalised to % TOC	μg/kg			-							
Acenaphthylene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							

Maintenance Dredging Sediment Characterisation Report

Port of Mackay

Sample ID			NAGD	NAGD	SG 01	SG 02	SG 03	Mean/	Standard		Normal (N)
	Units	PQL	PQL	Screening					Deviation	95% UCL	Log-normal (L)
Date Sampled				Level	27/09/18	27/09/18	27/09/18		1		Neither (X)
Acenaphthene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Fluorene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Phenanthrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Anthracene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Fluoranthene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Pyrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benz(a)anthracene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Chrysene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(b+j)fluoranthene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(k)fluoranthene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(e)pyrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(a)pyrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Perylene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(g.h.i)perylene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Dibenz(a.h)anthracene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Indeno(1.2.3.cd)pyrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Coronene	μg/kg	5	5	-	<5	<5	<5				
Normalised to % TOC	μg/kg			-							
Sum of PAHs	μg/kg	4	100	10000	<4	<4	<4				
Normalised to % TOC	μg/kg			10000							
Notes	F-5,9										

Notes

Note

When calculating averages and 95%UCLs, values below detection for individual sample results were set to half the detection levels

(consistent with the NAGD).

PQL Practical Quantitation Limit
Sample ID Sample location numbers

ND Insufficient data

No guidelines levels (i.e. Screening or Maximum Levels) set in NAGD for given parameter, or no analysis undertaken for a given

sample

Value exceeds NAGD or agreed local screening level

Normalised to % TOC Normalised to % TOC, over the range of TOC from 0.2 to 10%

Not tested

4.5 Reference sites

4.5.1 Physical characteristics

4.5.1.1 Particle Size Distribution

Sediment textures within the reference sites are comprised of sand and gravel with only 1% or less of silt and clays. A summary of PSD results for the reference sites are presented in Table 4-9 and Figure 4-5.

4.5.1.2 Settling rate

Settling rates are provided in Table 4-9. This indicates that settling rates are similarly fast due to high sand and gravel content.

Table 4-9 Particle size distribution of sediments across the reference sites

				Texture			Soil Particle		1	0% Setteability	,			2	0% Setteability		
Sample ID	Date Sampled	Clay	Silt	Sand	Gravel	Cobbles	Density	Underflow Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement	Clarity	Underflow Density	Underflow Solids	Settling Rate @ 50% of Settlement	Settling Rate @ 90% of Settlement	Clarity
U	Inits	%	%	%	%	%	g/cm3	g/cm3	%	mm/min	mm/min		g/cm3	%	mm/min	mm/min	
	PQL	1	1	1	1	1	0.01	0.01	0.1	0.001	0.001		0.01	0.1	0.001	0.001	
Size (mm)		< 0.02	0.02-0.6	0.6-2	2-60	>60	-										
REF_01	27/09/2018	<1	1	68	31	<1	2.61	1.93	74	56.6	56.6	Clear	1.96	72.7	24.4	24.4	Clear
REF_02	27/09/2018	1	1	83	15	<1	3.08	1.99	71.7	58.4	58.4	Clear	1.99	71.7	24.8	24.8	Clear
REF_03	27/09/2018																
Mean		1	1	76	23	<1	2.85	1.96	72.9	57.5	57.500		1.98	72.2	24.60	24.600	

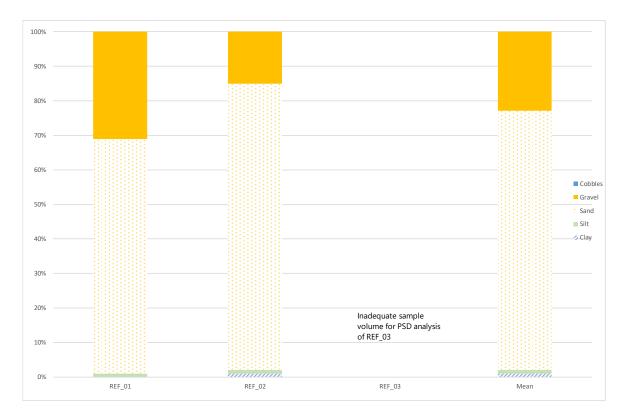


Figure 4-5 Particle size distribution of sediments in the reference sites

4.5.2 Chemical characteristics

The results of chemical analyses for sediments in the reference sites are summarised below. This summary includes a comparison against NAGD screening levels in Table 2 of Appendix A. A tabulated summary of the chemical analysis is provided in Table 4-10. Primary laboratory reports are provided in Appendix C.

Note that 95%UCLs of the mean values were not calculated as the sample size (i.e. three values) is too small to generate accurate results.

4.5.2.1 Metals and Metalloids

Metals and metalloid concentrations were below the respective NAGD Screening Level for all reference samples.

4.5.2.2 Organotins

All organotin compounds were less than the laboratory LORs, therefore concentrations of TBT are below the NAGD screening level of $9\mu gSn/kg$.

4.5.2.3 TPH, TRH and BTEX

Concentrations of TPH and TRH were detected in most samples. However, only total TPH can be compared to a NAGD screening level of 500mg/kg. Concentrations of TPH in all samples collected were below the NAGD screening level.

Concentrations of BTEX in all samples analysed were below the LOR.

4.5.2.4 PAH

Concentrations of PAHs were below the LOR in all reference samples collected, therefore the 95%UCL of the mean could not be calculated. Nonetheless, these concentrations were below NAGD screening criteria of 10,000µg/kg for total PAH.

4.6 Comparison of Reference sites to DMPA

Contaminant concentrations in DMPA (SG) and Reference site samples are similarly below the NAGD Screening Levels for all chemicals of concern. Sediment textures in DMPA (SG) and Reference site samples are consistent and primarily sand and gravel with negligible clay and silt components. These results indicate that both DMPA (SG) and Reference site samples are comparable and support continued placement of maintenance dredge material.

Table 4-10: Summary of chemical analysis results for reference sites

				NAGD							Normal (N)
Sample ID	Units	PQL	NAGD	Screening	REF_01	REF_02	REF_03	Mean/	Standard	95% UCL	Log-normal (L)
Date Sampled			PQL	Level	27/09/18	27/09/18	27/09/18	Geomean	Deviation		Neither (X)
Misc											
% Moisture	%	1	0.1	-	17.7	17.8	17.2	17.6	0.3		
Total Organic Carbon	%	0	0.1	-	0.23	0.25	0.2	0.2	0.0		
Metals and Metalloids	<u> </u>				<u>I</u>	<u> </u>	<u> </u>		<u> </u>	<u>l</u>	
Arsenic, As	mg/kg	1	1	20	18.4	9.7	9.88	12.7	5.0		
Cadmium, Cd	mg/kg	0.1	0.1	1.5	<0.1	< 0.1	<0.1				
Chromium, Cr	mg/kg	1	1	80	4	3.7	3.1	3.6	0.5		
Copper, Cu	mg/kg	1	1	65	3.6	1.2	1.2	2.0	1.4		
Lead, Pb	mg/kg	1	1	50	11.4	3.1	2.4	5.6	5.0		
Mercury, Hg	mg/kg	0	0.01	0.15	< 0.01	< 0.01	< 0.01				
Nickel, Ni	mg/kg	1	1	21	3.2	1.7	1.5	2.1	0.9		
Zinc, Zn	mg/kg	1	1	200	7	4	4.3	5.1	1.7		
Organotins	ļ <i>9</i> , <i>9</i>								<u> </u>		
Monobutyltin - Phase II	μg Sn/kg	1	1	_	<1	<1	<1				
· ·					` ' '	``	` ' '				
Normalised to % TOC	μg Sn/kg		-	-							
Dibutyltin - Phase II	μg Sn/kg	1	1	-	<1	<1	<1				
Normalised to % TOC	μg Sn/kg		-	-							
Tributyltin - Phase II	μg Sn/kg	0.5	1	-	<0.5	<0.5	< 0.5				
Normalised to % TOC	μg Sn/kg		_	9							
TPH	μg 317kg		_	9							
		<u> </u>	10				l .a		 		
TPH C6-C9	mg/kg	3	10	-	<3	<3	<3				
TPH C10-14	mg/kg	3	10		<3	<3	<3	6.7	2.5		
TPH C15-28	mg/kg	3	50	-	7	9	4	6.7	2.5		
TPH C29-36	mg/kg	5	50	-	<5	7	<5	7.0	6.2		
Total TPH	mg/kg	3		550	7	16	4	9.0	6.2		
TRH	- 4	<u> </u>				1 2	1 2	1	1		
C6 - C10 Fraction	mg/kg	3	-	-	<3	<3	<3				
C6 - C10 Fraction - BTEX	mg/kg	3	-	-	<3.0	<3.0	<3.0				
>C10 - C16 Fraction	mg/kg	3	-	-	<3	<3	<3	10.0	2.0		
>C16 - C34 Fraction	mg/kg	3	-	-	10	13	7	10.0	3.0		
>C34 - C40 Fraction	mg/kg	5	-	-	<5	6	<5 -	6.0			
>C10 - C40 Fraction (sum) >C10 - C16 Fraction-	mg/kg	3	-	-	10	19	7	12.0	6.2		
Naphthalene	mg/kg	3	-	-	<3	<3	<3				
BTEXN											
Benzene	mg/kg	0.2	_	_	<0.2	<0.2	<0.2				
Toluene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
Ethylbenzene	mg/kg	0.2	-	_	<0.2	<0.2	<0.2				
meta- & para-Xylene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
ortho-Xylene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
Total Xylenes	mg/kg	0.2	-	-	<0.5	<0.5	<0.5				
Sum of BTEX	mg/kg	0.3	200	-	<0.3	<0.3	<0.3				
Naphthalene	mg/kg	0.2	-	-	<0.2	<0.2	<0.2				
PAH	ilig/kg	0.2			```.`	```	```.`				
Naphthalene	ua/ka	5	5	_	<5	<5	<5				
<u>'</u>	μg/kg	Э	5		< 5	< 5	< 5				
Normalised to % TOC	μg/kg	г	г	-		٠, ٦					
2-Methylnaphthalene	μg/kg	5	5	-	<5	<5	<5				
Normalised to % TOC	μg/kg	4	г	-	. 4	. 4	. 4				
Acenaphthylene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							

Maintenance Dredging Sediment Characterisation Report

PORTS CEPTADEA

Port of Mackay

Sample ID	Units	PQL	NAGD POL	NAGD Screening	REF_01	REF_02	REF_03	Mean/	Standard Deviation	95% UCL	Normal (N) Log-normal (L)
Date Sampled			PQL	Level	27/09/18	27/09/18	27/09/18	Geomean	Deviation		Neither (X)
Acenaphthene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Fluorene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Phenanthrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Anthracene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Fluoranthene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Pyrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benz(a)anthracene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Chrysene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(b+j)fluoranthene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(k)fluoranthene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(e)pyrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(a)pyrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Perylene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Benzo(g.h.i)perylene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Dibenz(a.h)anthracene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Indeno(1.2.3.cd)pyrene	μg/kg	4	5	-	<4	<4	<4				
Normalised to % TOC	μg/kg			-							
Coronene	μg/kg	5	5	-	<5	<5	<5				
Normalised to % TOC	μg/kg			-							
Sum of PAHs	μg/kg	4	100	10000	<4	<4	<4				
Normalised to % TOC	μg/kg			10000							
Notes											

Notes

Note

When calculating averages and 95%UCLs, values below detection for individual sample results were set to half the detection

levels (consistent with the NAGD).

PQL Practical Quantitation Limit
Sample ID Sample location numbers
ND Insufficient data

No guidelines levels (i.e. Screening or Maximum Levels) set in NAGD for given parameter, or no analysis undertaken for a

given sample

Value exceeds NAGD or agreed local screening level

Normalised to % TOC Normalised to % TOC, over the range of TOC from 0.2 to 10%

Not tested

5 **Data validation**

This section examines the validity of the analytical data obtained in the study to provide confidence in the results presented.

5.1 Field sampling

Split duplicate samples are used to assess variation associated with sub-sample handling. Field replicate samples were collected to assess the extent of heterogeneity of sediments at sampling locations. As per the NAGD:

unduplicates (that is, separately extracted splits of a single mixed sample, not aliquot splits..... after extraction) should be within an Relative Percent Difference (RPD) of ±35 per cent."

"Field replicates (that is, two separate samples taken at the same location) should agree within an RPD (or for three samples at the one location, the relative standard deviation, RSD) of ±50%, although they may not always do so where the sediments are very heterogenous or greatly differing in grain size."

The number of field QA/QC samples analysed are presented in Table 3-3, while the results of the RPD and RSD assessment are provided in Table 5-1.

5.1.1 **Field replicates**

Six RPD and 18 RSD exceedances were recorded for field replicate results samples. These comprise of one TBT, one DBT, one Hq, one TRH > C34 - C40 Fraction and 20 PAH compounds. The RSD result of TBT is not uncommon as concentrations of TBT are known to vary significantly within small spatial distributions, but also within the same sample despite homogenisation. This is often due to its presence as paint flecks within sediment resulting in heterogenic concentrations within split samples. The exceedances recorded for DBT and Hg are associated with minor concentrations detected close to the LOR. Primary results for TRHs and PAHs indicate variability exists throughout the Tug Berth and Berth Pocket sediments and therefore RSD exceedances are not surprising. Nonetheless, as the associated primary sample concentrations for the RSD/RPD exceedances are either below the respective NAGD screening criteria or below the laboratory LOR, they are not considered to impact data quality or the outcome of this assessment.

5.1.2 Field split triplicate

The field split triplicate results analysed by ALS/SGS indicate a total of 21 blind split triplicate samples exceeded the ±35% RPD for duplicate analysis stipulated in the NAGD. This comprises seven metals (Cr, Ni, Zn), two TOC, four TPH, four TRH, three PAH and one gross alpha radionuclide exceedance.

The seven metal RPD exceedances were recorded for samples analysed by SGS. For each metal, the SGS concentrations were less than those detected by ALS. This may be associated with more aggressive acid extraction methods at ALS. The two TOC values are associated with low concentrations close to the LOR.

Similarly to RSD results, TPH, TRH and PAHs are variable throughout sediments and likely to have contributed to the RPD exceedance.

An RPD exceedance was recorded for Gross Alpha in samples TB_29 and D5 analysed by ALS. On further investigation, the laboratory has indicated that results are within their measurement uncertainties and therefore considered acceptable.

Although several exceedances have been identified, the concentrations of the parameters are below the respective NAGD screening levels, therefore do not impact data quality.

Table 5-1 Field split triplicate RPD and field triplicate RSD results

	Phas	se II																							Ф																											
Sample ID	% Moisture	Total Organic Carbon	Arsenic, As	Cadmium, Cd	Chromium, Cr	Copper, Cu	Lead, Pb	Mercury, Hg	Nickel, Ni	Zinc, Zn	Monobutyltin - Phase II	Dibutyltin - Phase II	Tributyltin - Phase II	TPH C6-C9	TPH C10-14	TPH C15-28	TPH C29-36	Total TPH	C6 - C10 Fraction	C6 - C10 Fraction - BTEX	>C10 - C16 Fraction	>C16 - C34 Fraction	>C34 - C40 Fraction	>C10 - C40 Fraction (sum)	>C10 - C16 Fraction-Naphthalene	TRH C37-C40	Benzene (F0)	Benzene	Toluene	Ethylbenzene	meta- & para-Xylene	ortho-Xylene	Total Xylenes	Sum of BTEX	Naphthalene	Naphthalene	2-Methylnaphthalene Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	riuorantnene Pyrene	Benz(a)anthracene	Chrysene	Benzo(b+j)fluoranthene	Benzo(k)fluoranthene	Benzo(e)pyrene	Benzo(a)pyrene	Perylene	Benzo(g.h.i)perylene	Dibenz(a.h)anthracene	Indeno(1.2.3.cd)pyrene
Field Triplic	ate																																	"																		
TB_05 (T1)	62	1.18	7	<0.1	19.5	20.3	12.6	0.03	11.1	48.9	<1	1	5.3	<3	6	42	41	89	<3	<3.0	7	64	30	101	7			<0.2	<0.2	<0.2	<0.4	<0.2	<0.5	<0.2	<0.2	20 <	<5 4	5 4	20	213	85 4	56 362	2 24	10 189	9 200	99	109	218	88	115	26	107
TB_05 (T2)	58.	5 0.74	7.56	<0.1	20.2	20.8	12.7	0.03	11.3	49.6	<1	<1	1.7	<3	5	22	18	45	<3	<3.0	5	32	16	53	5			<0.2	<0.2	0.2	<0.4	<0.2	<0.5	<0.2	<0.2	18	< 5 5	5 <5	<5	17	6 4	7 40) 24	4 20	24	11	14	21	21	14	<5	13
TB_05 (T3)	57.	1 0.71	6.58	<0.1	15.8	18.9	11.3	0.02	9.3	42.6	<1	2	3.6	<3	5	30	26	61	<3	<3.0	5	45	20	70	5			<0.2	<0.2	<0.2	<0.4	<0.2	<0.5	<0.2	<0.2	30	7 5	1 8	25	296	136 8	39 64	4 43	35 286	6 296	154	162	329	108 °	167	39	159
RSD	4%	30%	7%	ND	13%	5%	6%	22%	10%	8%	ND	67%	51%	ND	11%	32%	41%	34%	ND	ND	20%	34%	33%	33% 2	20%			ND	ND	ND	ND	ND	ND	ND	ND	28% N	ND 74	l% 67%	6 22%	82%	87% 8	9% 879	% 88	82%	% 80%	82%	79%	82%	63%	79%	40%	80%
B1_02 (T1)	59.	7 0.75	7.94	<0.1	22	30.1	10.9	0.02	12.2	83	<1	<1	<0.5	<3	6	22	16	44	<3	<3.0	6	31	10	47	6			<0.2	<0.2	<0.2	<0.4	<0.2	<0.5	<0.2	<0.2	16	<5 5	5 14	12	99	12 2	10 159	9 82	2 66	5 58	33	32	46	21	26	7	24
B1_02 (T2)	69.	2 0.86	9.7	<0.1	32.2	18.5	15.2	0.03	16.3	59	<1	<1	<0.5	<3	14	44	50	108	<3	<3.0	14	69	34	117	14			<0.2	<0.2	<0.2	<0.4	<0.2	<0.5	<0.2	<0.2	<5 <	<5 <	4 <4	<4	<4	<4	6 6	<4	4 <4	. 4	4	<4	<4	<4	<4	<4	<4
B1_02 (T3)	68.2	2 0.9	9.22	<0.1	30.1	18	14.2	0.03	15.3	56.8	<1	<1	<0.5	<3	15	45	45	105	<3	<3.0	15	67	30	112	15			<0.2	<0.2	<0.2	<0.4	<0.2	<0.5	<0.2	<0.2	<5	<5 <	4 <4	<4	<4	<4	7 6	4	4 <4	4 <4	<4	<4	<4	<4	<4	<4	<4
RSD	8%	9%	10%	ND	19%	31%	17%	22%	15%	22%	ND	ND	ND	ND	42%	35%	50%	42%	ND	ND	42%	38%	52%	42%	12%			ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND N	ID NE) 181	1% ND) ND	ND	ND	ND	ND	ND	ND	ND
SB_02 (T1)	34.2	2 0.54	13.6	<0.1	8.4	9	6.6	<0.01	8	18.6	<1	<1	<0.5																																							
SB_02 (T2)	50.	7 0.83	6.98	<0.1	17.6	15.9	11.5	0.02	10.3	37.5	<1	<1	0.7																																							
SB_02 (T3)	47	0.95	5.48	<0.1	13.1	10.9	9	0.01	7.4	27.2	<1	<1	<0.5																																							
RSD	20%	% 27%	50%	ND	35%	ND	27%	67%	18%	34%	ND	ND	ND																																							
Split replica	ite																																		·																	
SB_79	59.	7 1.08	6.39	<0.1	21	15	11	0.02	12	41	<1	<1	<0.5																																							
D1	60	0.93	6.68	<0.1	21	16	14	0.02	12	42	<1	<1	<0.5																																							
RPD	1%	15%	4%	ND	1%	6%	19%	0%	3%	2%	ND	ND	ND																																							
D2	63	1.5	5	<0.3	12	11	9 .	<0.05	8	28	<0.1	<0.1	<0.1																																							
RPD	5%	33%	24%	ND	55%	31%	22%	ND	45%	37%	ND	ND	ND																																							
B5_10	67.3	3 0.88	8.05	<0.1	24	18	14	0.02	15	50	<1	<1	<0.5	<3	6	20	14	40	<3	<3.0	6	27	10	43	6 1	NT I	NT ·	<0.2	<0.2	<0.2	<0.4	<0.2	<0.5	<0.2	<0.2	12	<5 <	5 <5	<5	9	<5 [']	4 11	6	6 8	8	<5	<5	5	13	<5	<5	<5
D3	68.2	2 0.87	7.66	<0.1	22	17	13	0.02	14	49	<1	<1	<0.5	<3	5	14	8	27	<3	<3.0	5	18	6	29	5 1	NT I	NT ·	<0.2	<0.2	<0.2	<0.4	<0.2	<0.5	<0.2	<0.2	16	<5 <	5 <5	<5	10	<5 [']	6 13	3 7	7 8	8	<5	<5	5	14	<5	<5	<5
RPD	1%	1%	5%	ND	10%	3%	7%	0%	7%	3%	ND	ND	ND	ND	18%	35%	55%	39%	ND	ND	18%	40%	50%	39%	1 %81	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND	29% N	ND N	D ND	ND	11%	ND 1	3% 179	% 15°	5% 0%	0%	ND	ND	0%	7%	ND	ND	ND
D4	70	2	8	<0.3	17	15	11 ·	<0.05	9	39	<0.1	<0.1	<0.1	<20	<20	<45	<45	<110	<25	<25	<25	<90	<120	<210	<25 <	100 <	۰ 0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<0.1	<0.1 <	0.1 <0	0.1 < 0.1	1 <0.1	<0.1	<0.1 <	0.1 <0.	1 <0).1 <0.1	1 <0.1	<0.1	NT	<0.1	NT -	<0.1	<0.1	<0.1
RPD	4%	78%	1%	ND	36%	16%	25%	ND	43%	25%	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND N	ID NE) NI	D ND) ND	ND	ND	ND	ND	ND	ND	ND
TB_29	65.8	8 0.92	8.01	<0.1	26	23	16	0.03	15	55	<1	<1	2	<3	6	23	18	47	<3	<3.0	6	33	15	54	6 1	NT I	NT ·	<0.2	<0.2	0.2	<0.4	<0.2	<0.5	<0.2	<0.2	12	<5 <	5 <5	<5	9	<5 ⁻	5 13	; 8	3 8	10	<5	6	7	12	7	<5	6
D5	66.	2 0.9	8.05	<0.1	26	24	16	0.03	15	56	<1	1	2	<3	5	35	19	59	<3	<3.0	6	47	14	67	6 1	NT I	NT ·	<0.2	<0.2	0.2	<0.4	<0.2	<0.5	<0.2	<0.2	17	<5 <	5 <5	<5	11	<5 2	22 19	12	2 11	10	5	7	9	14	7	<5	6
RPD	1%	2%	0%	ND	0%	3%	1%	0%	0%	3%	ND	ND	9%	ND	18%	41%	5%	23%	ND	ND	0%	35%	7%	21%	0% 1	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND	34% N	ND N	D ND	ND	20%	ND 3	389	% 40	32%	6 0%	ND	15%	25%	15%	0%	ND	0%
D6	68	1.9	8	<0.3	15	20	11	<0.05	8	41	<0.1	<0.1	<0.1	<20	<20	<45	<45	<110	<25	<25	<25	<90	<120	<210	<25 <	100 <	:0.1 ·	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	<0.6	<0.1	<0.1 <	0.1 <0	0.1 <0.1	1 <0.1	<0.1	<0.1 <	0.1 <0.	1 <0).1 <0.1	1 <0.1	<0.1	NT	<0.1	NT -	<0.1	<0.1	<0.1
RPD	3%	70%	0%	ND	53%	16%	35%	ND	55%	28%	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	D ND	ND	ND	ND N	ID NE) N[ID ND) ND	ND	ND	ND	ND	ND	ND	ND
Notes				-										•								•						,	-	-					1			,			,	,										

Notes

Relative percent difference (RPD) or relative standard deviation (RSD) outside suggested NAGD data validation level.

% Values in green indicate an RPD was calculated instead of RSD as there were only two values to compare

ND Not Determinable

NT Not Tested

	Phase	: II																																																
Sample ID	Coronene	Sum of PAHs	Total PAH (NEPM/WHO 16)	Carcinogenic PAHs, BaP TEQ <lor=0< th=""><th>Carcinogenic PAHs, BaP TEQ <lor=lor< th=""><th>Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""><th>1-methylnaphthalene</th><th>Aldrin</th><th>alpha-BHC</th><th>beta-BHC</th><th>delta-BHC</th><th>4.4DDD</th><th>44'.hnF</th><th>4.4'-DDT</th><th>Sum of DDD + DDE + DDT</th><th></th><th>alpha-Endosulfan</th><th>beta-Endosulfan</th><th>Endosulfan sulfate</th><th>Endosulfan (sum)</th><th>Endrin</th><th>Endrin aldehyde</th><th>Endrin ketone</th><th>Heptachlor</th><th>Hexachlorobenzene (HCB)</th><th>gamma-BHC</th><th>Methoxychlor</th><th>cis-Chlordane</th><th>trans-Chlordane</th><th>Total Chlordane (sum)</th><th>Oxychlordane</th><th>Sum of Aldrin + Dieldrin</th><th>Isodrin</th><th>Lindane</th><th>Mirex</th><th>Gamma Chlordane</th><th>Aipria Chiordane o,p'-DDD</th><th>o,p'-DDE</th><th>O, p'-DDT</th><th>p,p'-DDD</th><th>=00-q,q</th><th>Total CLP OC Pesticides</th><th>trans-Nonachlor</th><th>Gross alpha</th><th>Gross beta</th><th>Radium-226 Thorium-228</th><th>Thorium-234</th><th>Lead-210</th><th>Radium-228</th><th>Potassium-40</th></lor=lor></th></lor=lor<></th></lor=0<>	Carcinogenic PAHs, BaP TEQ <lor=lor< th=""><th>Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""><th>1-methylnaphthalene</th><th>Aldrin</th><th>alpha-BHC</th><th>beta-BHC</th><th>delta-BHC</th><th>4.4DDD</th><th>44'.hnF</th><th>4.4'-DDT</th><th>Sum of DDD + DDE + DDT</th><th></th><th>alpha-Endosulfan</th><th>beta-Endosulfan</th><th>Endosulfan sulfate</th><th>Endosulfan (sum)</th><th>Endrin</th><th>Endrin aldehyde</th><th>Endrin ketone</th><th>Heptachlor</th><th>Hexachlorobenzene (HCB)</th><th>gamma-BHC</th><th>Methoxychlor</th><th>cis-Chlordane</th><th>trans-Chlordane</th><th>Total Chlordane (sum)</th><th>Oxychlordane</th><th>Sum of Aldrin + Dieldrin</th><th>Isodrin</th><th>Lindane</th><th>Mirex</th><th>Gamma Chlordane</th><th>Aipria Chiordane o,p'-DDD</th><th>o,p'-DDE</th><th>O, p'-DDT</th><th>p,p'-DDD</th><th>=00-q,q</th><th>Total CLP OC Pesticides</th><th>trans-Nonachlor</th><th>Gross alpha</th><th>Gross beta</th><th>Radium-226 Thorium-228</th><th>Thorium-234</th><th>Lead-210</th><th>Radium-228</th><th>Potassium-40</th></lor=lor></th></lor=lor<>	Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""><th>1-methylnaphthalene</th><th>Aldrin</th><th>alpha-BHC</th><th>beta-BHC</th><th>delta-BHC</th><th>4.4DDD</th><th>44'.hnF</th><th>4.4'-DDT</th><th>Sum of DDD + DDE + DDT</th><th></th><th>alpha-Endosulfan</th><th>beta-Endosulfan</th><th>Endosulfan sulfate</th><th>Endosulfan (sum)</th><th>Endrin</th><th>Endrin aldehyde</th><th>Endrin ketone</th><th>Heptachlor</th><th>Hexachlorobenzene (HCB)</th><th>gamma-BHC</th><th>Methoxychlor</th><th>cis-Chlordane</th><th>trans-Chlordane</th><th>Total Chlordane (sum)</th><th>Oxychlordane</th><th>Sum of Aldrin + Dieldrin</th><th>Isodrin</th><th>Lindane</th><th>Mirex</th><th>Gamma Chlordane</th><th>Aipria Chiordane o,p'-DDD</th><th>o,p'-DDE</th><th>O, p'-DDT</th><th>p,p'-DDD</th><th>=00-q,q</th><th>Total CLP OC Pesticides</th><th>trans-Nonachlor</th><th>Gross alpha</th><th>Gross beta</th><th>Radium-226 Thorium-228</th><th>Thorium-234</th><th>Lead-210</th><th>Radium-228</th><th>Potassium-40</th></lor=lor>	1-methylnaphthalene	Aldrin	alpha-BHC	beta-BHC	delta-BHC	4.4DDD	44'.hnF	4.4'-DDT	Sum of DDD + DDE + DDT		alpha-Endosulfan	beta-Endosulfan	Endosulfan sulfate	Endosulfan (sum)	Endrin	Endrin aldehyde	Endrin ketone	Heptachlor	Hexachlorobenzene (HCB)	gamma-BHC	Methoxychlor	cis-Chlordane	trans-Chlordane	Total Chlordane (sum)	Oxychlordane	Sum of Aldrin + Dieldrin	Isodrin	Lindane	Mirex	Gamma Chlordane	Aipria Chiordane o,p'-DDD	o,p'-DDE	O, p'-DDT	p,p'-DDD	=00-q,q	Total CLP OC Pesticides	trans-Nonachlor	Gross alpha	Gross beta	Radium-226 Thorium-228	Thorium-234	Lead-210	Radium-228	Potassium-40
Field Triplicat	te																																																	
TB_05 (T1)	27	2620)					<0.50	<0.5	50 <0.	.5 <0.	50 <0.	.5 <0.	50 <0.5	50 <0.	5 <0.5	0 < 0.5	<0.50	<0.50	<0.50	<0.50	<0.5 ·	<0.5 <	0.5 <0	.5 <0.5	<0.2 5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50												640	<50 0					
TB_05 (T2)	<5	295						<0.50	<0.5	50 <0.	.5 <0.	50 <0.	.5 <0.	50 <0.5	50 <0.	⁵ <0.5	0 < 0.5	<0.50	<0.50	<0.50	<0.50	<0.5	<0.5 <	0.5 <	.5 <0.5	<0.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50												510						
TB_05 (T3)	41	4210)					<0.50	<0.5	50 <0.	.5 <0.	50 <0.	.5 <0.	50 <0.5	50 <0.	⁵ <0.5	0 < 0.5	<0.50	<0.50	<0.50 <0.50 <0.50 ND	<0.50	<0.5 ·	<0.5 <	0.5 <0	.5 <0.5	<0.2 5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50												570	530					
RSD	41%	83%						ND	ND) NE) NI) NE	O N	D NE) NE) ND	ND	ND	ND	ND	ND	ND	ND	ND N	D ND	ND	ND	ND	ND	ND	ND	ND												11%	4%					
B1_02 (T1)	6	928																																																
B1_02 (T2)	<5	20																																																
	<5	17																																																
RSD	ND	163%	0																																															
SB_02 (T1)																																																		
SB_02 (T2)																																																		
SB_02 (T3)																																																		
RSD																																																		
Split replicate)		•								ļ			ļ			ļ					ļ					ļ								•	ļ	•						ļ	•				ļ	ļ	
SB_79																Т																					Т			T										
 D1																																																		
RPD																																																		
D2																																																		
RPD																																																		
B5_10	<5	86	NT	NT	NT	NT	NT	NT	NT	· NI	ΓN	T N	T N	T N1	· NT	NT	NT	NT	NT	NT	NT	NT	NT	NT N	T NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT N	N TV	IT NT	NT	NT	NT I	IT N1	N'	T NT							
D3	<5	97		NT				NT	_			T N						NT										NT				NT		NT																
RPD	ND	12%			ND	ND		ND												ND						_						ND																		
D4		<0.8	_		2 <0.3	-									_					NT						-																								
RPD	ND	ND			ND	-		ND	-						_					ND						-																								
TB_29		113			NT			<0.50																																				1100	530 1	NT N	T NT	NT	NT	NT
D5		150	_		NT	NT	NT	<0.50	<0.5	0 50 <0.	.5 <0.	0 50 <0.	.5 <0.	50 <0.5	0 0 0 0	5 <0.5	0 0 <0.5	<0.50	< 0.50	<0.50	<0.50	<0.5	() <0.5 <	0.5 <0	.5 <0.5	<0.2	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NT										T NT				T NT		NT	
RPD		28%	_		ND															ND																								49%	2% 1					ND
D6			_																	NT																								NT				67	16	
RPD		ND	+		ND		_) NE								ND							_									_											D ND	-		ND
		1																																																

Notes

Relative percent difference (RPD) or relative standard deviation (RSD) outside suggested NAGD data validation level.

% Values in green indicate an RPD was calculated instead of RSD as there were only two values to compare

ND Not Determinable

NT Not Tested

5.1.3 Field Blanks

Field rinsate blank samples were below LOR as indicated in Table 5-2.

Table 5-2: Rinsate blank sample results

Sample ID			Rinsate 1	Rinsate 2	Rinsate 3	Rinsate 4
Date Sampled	Units	PQL	24/09/18	25/09/18	26/09/18	27/09/18
Metals and Me	etalloids					
Arsenic	mg/L	0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	mg/L	0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	0.001	<0.001	<0.001	<0.001	<0.001
Lead	mg/L	0.001	<0.001	<0.001	<0.001	<0.001
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Nickel	mg/L	0.001	<0.001	<0.001	<0.001	<0.001
Zinc	mg/L	0.005	<0.005	<0.005	<0.005	<0.005

5.2 Laboratory analysis

The accuracy of the data provided by the laboratory is determined through analysis of spiked samples. The NAGD recommends that "Recovery Rates [for matrix spiked samples] should be within the limits specified for the analysis method (typically 75-125%)".

The precision of the data is assessed by the RPD for replicate/duplicate samples or the RSD for triplicate or more samples. The NAGD recommends that "Duplicate samples are to be spiked and the duplicates should agree within the specified relative percent differences (RPD) for the method (typically $\pm 30-35\%$)".

ALS and SGS incorporated a range of QA/QC methods to ensure accuracy of laboratory data including:

- Duplicate analyses
- Method blanks
- Laboratory control samples
- Sample surrogate recoveries
- Matrix spikes.

The Quality Control Report provided by ALS and SGS are included with laboratory analysis reports in Appendix C, while a summary of the laboratory outliers in provided in Table 5-3.

Table 5-3 QA/QC laboratory outlier summary table

QA/QC Method	Laboratory Outliers	Comments				
Laboratory	ALS (EB1823470): Outliers (recoveries greater than the upper control limit (36-128%)) were reported for QC sample 1996483-002 and 2002075-002 for MBT	These exceedances suggest a high bias in MBT, however, MBT concentrations in primary samples were all below the respective laboratory LOR (except sample H-3) therefore these outliers are not considered impact data quality.				
control spikes	ALS (EB1828594): Recovery greater than the upper control limits for PAH compounds in QC sample QC-2055992-002	Primary PAH concentrations for the repeated analysis were below the LOR therefore this outlier result does not impact data quality.				
	ALS (EB1828853): None					
Laboratory	ALS (EB1823470):	As indicated in Section 5.1.1, PAH variations were detected. This is confirmed by ALS RPD				
Duplicates	Several RPD values greater than the laboratory acceptable range (0-20%) and the NAGD's RPD acceptable range of ± 30 –35 per cent for duplicate samples reported by ALS. These exceedances included:	exceedances. This suggests PAH concentrations are not homogeneous throughout sediments. However as there are no LCS, MB or MS exceedances for PAH compounds the laboratory duplicate exceedances do not impact data quality.				
	 PAH compounds for TB_05(T3) and B1_02(T1) >C10-C40 Fraction (sum) for B1_02(T1) As for SB_02(T1) Zn for B1_02(T1) 	Primary concentrations for >C10-C40, As and Zn were below the NAGD Screening Levels for all samples. This combined with LCS and MB results being within acceptable limits for metals indicates that these RPD exceedance do not impact data quality.				
	ALS (EB1828594) and ALS (EB1828853): None					
Matrix Spikes	ALS (EB1823470):	MS recoveries less than the lower data quality objectives indicated there may be matrix				
(MS)	MS were within NAGD guidelines except for those analytes listed below:	interferences that may be attributed to sample heterogeneity. However, as MB and LCS were				
	 TPH, BTEX, and MBT outliers reported for B1_07 and B1_02(T3) 					

QA/QC Method	Laboratory Outliers	Comments
	 MBT for SB_02(T2), B1_07, B1_02(T3) 	within acceptable limits for TPH and BTEX and primary sample concentrations for MBT are less than the laboratory LOR these outliers are not considered to impact data quality.
	ALS (EB1828594) and ALS (EB1828853): None	
	SGS (SE184684) MS outliers (below the acceptance criteria) were recorded for Ni, Zn in SGS QC sample LB158396	As MB, LCS samples were within the acceptable range these MS outliers do not impact data quality.
	 Toluene, ethylbenzene, xylenes, TRH C6-9 in SGS QC sample LB158393 	
Surrogate Spikes	ALS (EB1823470): Surrogates outliers for TBT occurred for SG_03, SB_58 and REF_02. The outliers were greater than the laboratory criteria (35-130%).	Surrogate recoveries greater than the acceptance criteria suggest concentrations of TBT are estimations with a high bias. However, as primary concentrations were below the laboratory LOR or below the NAGD Screening Level in all primary samples these outliers do not impact data quality.
	ALS (EB1828594) and ALS (EB1828853): None	
	SGS (SE184684) BTEX surrogate outliers (below the acceptance criteria) were recorded for SGS QC sample LB158396	Surrogate recoveries less than the acceptance criteria indicate a low bias, however as the primary sample concentrations (i.e. <lor) acceptable="" als="" and="" are="" by="" data="" does="" impact="" lcs="" mb,="" not="" outlier="" quality.<="" ranges="" replicated="" samples="" td="" this="" were="" within=""></lor)>
Holding times	ALS (EB1823470): Exceedances occurred for moisture content, TRH, TPH, BTEXN, TOC, organotins, and PAHs for B1_02(T2), B1_02(T3).	The samples with holding time exceedances are triplicate T2 and T3 samples and have been compared with sample B1_02(T1) (Section 5.1.1). These results indicate variability in sample concentrations, however, as the associated primary sample concentrations are either below the respective NAGD screening criteria or below the laboratory LOR, they are not considered to impact data quality or the outcome of this assessment.

QA/QC Method	Laboratory Outliers	Comments
	ALS (EB1828594): Exceedances occurred for PAH	As the laboratory refrigerate samples during storage it is unlikely that PAH concentrations were impacted due to extended holding times. Due to the refrigerated storage and as the result was replicated three times, this exceedance is considered not to impact data quality.
	ALS (EB1828853): None	
Frequency of quality control samples	ALS (EB1823470), ALS (EB1828594) and ALS (EB1828853): None	

5.3 Outliers

Outliers are identified when individual sample concentrations exceed two standard deviations (NAGD, 2009). Where they were detected above the Screening Levels, the stored portion of the sample was reanalysed (labelled R1, R2 and R3) in triplicate, and if the original result was not confirmed, it was discarded (TBT only) in favour of the mean of the triplicates. Where the parameter was something other than TBT (i.e. PAH), the original result was retained and included in the mean of the triplicate analysis. In some cases, concentrations exceeding the Screening Levels were also reanalysed in triplicate.

Outliers and concentrations identified above the Screening Levels and the associated initial concentration and concentrations of the reanalysis are provided in Table 5-4. The means calculated are used as the new PAH concentrations for sample TB_02 in Table 4-4.

Table 5-4: TB02 PAH outliers

Parameter	Initial Conc.	Mean	Initial SD	2 x SD	Initial concentration outlier?	R1	R2	R3	Mean
Naphthalene	15	14.5	2.9	5.8	Yes	0.5	0.5	0.5	7.7
2-Methylnaphthalene	7	ID	ID	ID	ID	NT	NT	NT	7.0
Acenaphthylene	80	62.5	ID	ID	ID	0.5	0.5	0.5	24.0
Acenaphthene	53	28.5	ID	ID	ID	0.5	0.5	0.5	13.8
Fluorene	128	74.0	ID	ID	ID	0.5	0.5	0.5	33.9
Phenanthrene	2150	401.7	860.3	1720.6	Yes	0.5	0.5	0.5	790.8
Anthracene	380	157.0	197.1	394.2	No	0.5	0.5	0.5	183.8
Fluoranthene	6170	1122.2	2478.9	4957.9	Yes	0.5	0.5	0.5	2264.7
Pyrene	4140	765.7	1658.7	3317.4	Yes	0.5	0.5	0.5	1521.3
Benz(a)anthracene	1970	377.2	785.6	1571.3	Yes	0.5	0.5	0.5	726.1
Chrysene	1630	311.3	649.9	1299.8	Yes	0.5	0.5	0.5	600.6
Benzo(b+j)fluoranthene	950	202.0	373.9	747.8	Yes	0.5	0.5	0.5	353.9
Benzo(k)fluoranthene	467	193.0	241.2	482.3	Yes	0.5	0.5	0.5	225.4
Benzo(e)pyrene	421	94.3	165.0	330.1	Yes	NT	NT	NT	276.2
Benzo(a)pyrene	527	132.3	210.3	420.6	Yes	0.5	0.5	0.5	203.4
Perylene	168	52.2	64.1	128.1	Yes	NT	NT	NT	116.1
Benzo(g.h.i)perylene	147	50.8	63.2	126.4	Yes	0.5	0.5	0.5	62.8
Dibenz(a.h)anthracene	52	28.0	23.1	46.1	Yes	0.5	0.5	0.5	25.5
Indeno(1.2.3.cd)pyrene	172	52.7	70.5	141.0	Yes	0.5	0.5	0.5	70.1
Coronene	13	16.0	9.8	19.7	No	NT	NT	NT	ID
Sum of PAHs	19600	3822.8	7791.3	15582.5	Yes	0.5	0.5	0.5	7231.6

Notes: ** Initial result retained; NT: Not Tested; ID: Indeterminable

6 Conclusion

The following conclusions are drawn from the sediment characterisation assessment described within this report:

- Concentrations and / or 95% UCL of the mean of all chemical contaminants are below the respective NAGD screening criteria
- The sediments in the DMPA are physically and chemically similar to the sediments in the reference area therefore support the continued placement of material at the DMPA.

As per the NAGD assessment framework, it is considered that the sediments to be dredged from the Port of Mackay Channel, Swing Basin, Berth Pockets 1, 3, 4 and 5 and Tug Berths are suitable for unconfined ocean placement in the DMPA.

In accordance with Section 4.2.1 of the NAGD, the typical validity period for Phase II and Phase III results is five years. This means that, depending on other activities at the port, the results from this assessment may be valid until 24 September 2023.

7 References

Advisian, 2018. Port of Mackay Maintenance Dredging Sampling and Analysis Plan, document number 301001-02095-EN-PLN-001. Advisian, Brisbane.

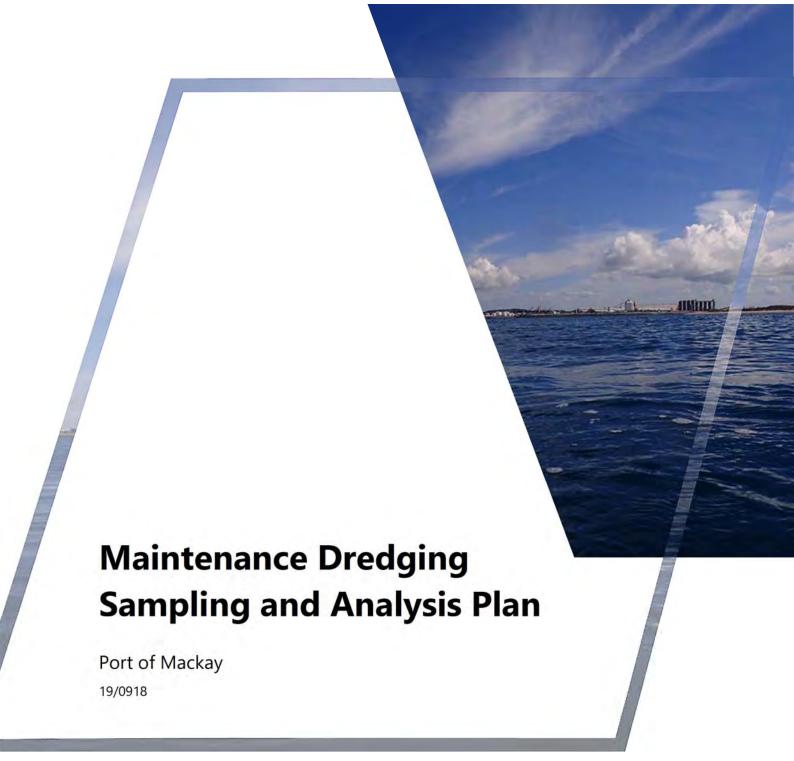
Australian and New Zealand Governments (ANZG), 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia.

Commonwealth of Australia (2009) National Assessment Guidelines for Dredging. Commonwealth of Australia, Canberra.

Golder Associates (2013). 2013 Maintenance Dredging – Sediment Characterisation Report: Prepared for North Queensland Ports Corporation of Queensland.

WorleyParsons, 2007. Mackay Port Authority: Port of Mackay Harbour – Sediment Quality Assessment.

WorleyParsons, 2010. NQBP Mackay Harbour and Spoil Ground 2009 Sediment Characterisation Report, document number 301001-00797-00-EN-REP-0001.


WorleyParsons, 2010. North Queensland Bulk Ports (NQBP) Long Term Dredge Management Plan (LTDMP) Mackay Port 2010-2020, document number 301001-00797-00-EN-REP-0003 (WorleyParsons, 2010).

USEPA (2016). ProUCL: Statistical Support Software for Site Investigation and Evaluation, developed by USEPA and available online at: https://www.epa.gov/sites/production/files/2015-03/documents/proucl-one-page-fact-sheet.final.pdf.

Appendix A Sampling and Analysis Plan

Level 31, 12 Creek St Brisbane QLD 4000 Australia

301001-02095-00-EN-PLN-0001

North Queensland Bulk Ports Maintenance Dredging Sampling and Analysis Plan

Disclaimer

This report has been prepared on behalf of and for the exclusive use of North Queensland Bulk Ports, and is subject to and issued in accordance with the agreement between North Queensland Bulk Ports and Advisian.

Advisian accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party.

Copying this report without the permission of North Queensland Bulk Ports and Advisian is not permitted.

Project No: 301001-02095-00-EN-PLN-0001 – Maintenance Dredging Sampling and Analysis Plan

Rev [Description	Author	Review	Approval	Date
0 0	Original	Media	AMI.	ATT .	19/09/18
		N Bainton	A Kochnieff	B Boylson	

North Queensland Bulk Ports Maintenance Dredging Sampling and Analysis Plan

Table of Contents

1	Intro	duction	1	1								
	1.1	Obje	ctives	1								
	1.2	Scope	e	2								
2	Back	ground		4								
3	Prop	osed M	aintenance Dredging	5								
	3.1	3.1 Previous maintenance dredging										
	3.2 Dredge volumes and footprint											
	3.3	Туре	of sediments to be dredged	6								
	3.4	Dred	ging methods	6								
		3.4.1	Trailing suction hopper dredge (TSHD)	6								
	3.5	Dred	Dredged sediment relocation									
		3.5.1	Dredge Material Placement Ground (DMPA)	7								
		3.5.2	Uniform dredge sediment deposition	8								
	3.6	Timin	ng	8								
4	Existi	Existing Information										
	4.1	1 Site history and land use										
	4.2	Previo	ous sediment investigations	9								
		4.2.1	Physical Characteristics	9								
		4.2.2	Chemical Characteristics	9								
	4.3	Conta	amination status	12								
		4.3.1	Contaminants of concern	12								
		4.3.2	Exemption from testing	14								
5	Samp	oling an	nd Analysis of Sediments	16								

North Queensland Bulk Ports Maintenance Dredging Sampling and Analysis Plan

5.1	Ratio	nale	16							
5.2	Samp	ling Locations and Horizons	17							
	5.2.1	Channel and swing basin	17							
	5.2.2	Berth pockets	17							
	5.2.3	Tug berths	17							
	5.2.4	Reference sites	17							
	5.2.5	DMPA	18							
	5.2.6	Sediment horizons	19							
5.3	Analy	rtical Parameters	24							
	5.3.1	Phase II sediment analysis	24							
	5.3.2	Phase III Elutriate and Bioavailability Analysis	27							
5.4	Meth	ods and Equipment	27							
	5.4.1	Sampling Vessel	28							
	5.4.2	Sampling Procedures	28							
	5.4.3	Schedule	30							
	5.4.4	Contingency Plan	30							
5.5	Primary and Secondary Laboratories									
	5.5.1	Laboratory Methods	31							
5.6	QAQ	C	31							
	5.6.1	Quality Control – Field Sampling	31							
	5.6.2	Quality Control – Analysis	31							
5.7	Analy	rsis of Results	32							
	5.7.1	Phase II – Sediment Analysis for Total Concentrations	32							
	5.7.2	Phase III – Elutriate Analysis	33							
	5.7.3	Phase III – Bioavailability Analysis	33							

		5.7.4	Phase IV – Toxicity Analysis	34
	5.8	Repoi	rting	34
6	Refer	ences		35
Tal	ole Li	ist		
Table	3-1 Dred	dge areas	and volume of sediment to be dredged (Golder Associates, 2013)	6
Table	4-1 Hist	orical sec	liment investigations of the Port of Mackay	10
Table	4-2 Con	taminant	s of potential concern	13
Table	4-3 Prop	osed cor	ntaminants for laboratory analysis	14
		•	of the areas to be dredged and sampling requirements as per NAGD (
Table	5-2: Sam	npling int	ensity and QA/QC	19
Table	5-3: Cor	taminant	t suites, NAGD PQLs and laboratory LORs	24
Table	5-4 Deta	ailed anal	ytical summary at each site and sample vessel requirements	26
Table	5-5 Sam	pling act	ivities	29
Tal	ole o	f Fig	ures	
Figure	e 1-1 Loc	ation of t	the Port of Mackay and the navigational areas associated with the Po	rt3
			dump plot showing deposition during periods of low current (left) an	
_			the assessment of potential contaminants (NADG, Commonwealth of	
Figure	e 5-2 Cha	annel and	I swing basin random sampling locations	20
Figure	e 5-3 Ber	th pocke	ts random sampling locations	21
Figure	e 5-4 Tug	j berth ra	ndom sampling locations	22
Figure	e 5-5 Ref	erence ar	nd DMPA sampling locations	23
Figure	e 5-6 Dep	oloyment	schematic and a Van-veen grab	27

Appendix List

Appendix A Sampling location co-ordinates

Appendix B Example log sheet

Appendix C Laboratory Methods

North Queensland Bulk Ports Maintenance Dredging Sampling and Analysis Plan Port of Mackay

1 Introduction

Advisian has been commissioned by North Queensland Bulk Ports (NQBP) to undertake a sediment sampling and characterisation assessment within the Port of Mackay (the Port) to inform and support future maintenance dredging at Mackay. A sediment characterisation assessment is required to support near-term placement of maintenance dredge material at sea under NQBP's existing sea dumping permit in accordance with a ten-year Sea Dumping Approval (2012-2022) and an associated and approved Long Term Dredge Management Plan (LTDMP) prepared by WorleyParsons in 2010.

This document represents the Sampling and Analysis Plan (SAP) which describes the dredging proposal and outlines the proposed design and scope of the sediment characterisation assessment for the existing navigational areas within the Port. This SAP has been prepared in support of the sediment characterisation field program proposed to be conducted during September 2018. The SAP has been developed in accordance with the requirements outlined within the National Assessment Guidelines for Dredging (NAGD) (Commonwealth of Australia, 2009) and aligned with the most recent survey completed in 2013 (Golder Associates, 2013) and LTDMP (WorleyParsons, 2010). The SAP describes the sampling and analysis methods used to characterise the sediments, to ensure adequate data is collected pertaining to the physical and chemical properties of the proposed dredge sediments, prior to the next dredging as currently proposed for 2019. Adherence to the SAP will ensure that the data collected is valid and can be used to determine the suitability for placement of dredge material at the approved Dredge Material Placement Area (DMPA) (i.e. spoil ground) location.

The areas that this SAP applies to include the channel, swing basin, berth pockets 1, 3, 4 and 5, tug berths, DMPA and reference sites.

1.1 Objectives

This SAP is developed based on the requirements as set out in the NAGD (Commonwealth of Australia, 2009) with the objective to support Phase II, and if required Phase III, investigations in accordance with the NAGD, the ten-year Sea Dumping Approval (2012-2022) and the associated and approved LTDMP. The specific objectives of the SAP are to:

- Understand the quality and contamination status of sediments to be dredged from the Port
- Ensure sampling is undertaken consistent with industry best practice and the NAGD, 2009
- Achieve high quality laboratory analysis results incorporating appropriate Quality Assurance (QA) / Quality Control (QC) through use of recognised and NATA accredited analytical laboratories with expertise in marine sediment quality assessment applicable to dredge material management
- Ensure data from sampling is accurately reported, summarised, analysed and stored safely to
 provide confidence in the efficacy of the sediment sampling, handling, testing, analysis and
 reporting sufficient to determine the suitability of the dredge material for placement in
 accordance with the Sea Dumping Approval and LTDMP.

1.2 Scope

- Provide a description of the proposed dredging and placement footprint
- Understand the quality and contamination status of sediments to be dredged by describing existing and historical land uses which may influence the contamination potential of the sediment to be dredged
- Identify contaminants required for analysis based on potential contaminant sources and results of recent testing
- Determine the location and number of samples required to provide an adequate dataset for calculating the upper 95 percentile confidence limit (95% UCL) of the mean to compare to screening levels of contaminants
- Define the types of analysis required for sediments
- Identify and describe industry best practice field sampling protocols (i.e. collection and handling) to ensure sampling is undertaken to gain a representative understanding of the material
- Identify and describe appropriate QA/QC procedures for sample collection, handling and laboratory analysis in accordance with NAGD, 2009 to ensure high quality laboratory analysis results are achieved.
- Outline data assessment process and define the statistical techniques used to determine the status of potential contamination within the sediment to be dredged
- Present the reporting framework for the presentation of data, results and conclusions to address the needs of NQBP and the appropriate regulatory agency.

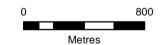
Figure 1-1:
Location of the Port of Mackay
and the navigational areas
associated with the Port

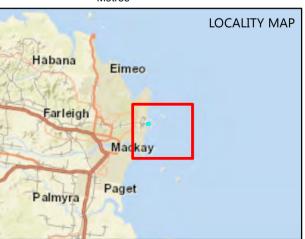
LEGEND

Berths and operational areas

Swing basin

Existing DMPA


///, 2018 Dredge area


Source Information:
Port facility layout and dredge area
Provided by NQBP - Sept 2018
Imagery - Web Service
Dept of Natural Resources and Energy

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:25,000

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong). Esri Korea. Esri (Thailand). NGCC. © OpenStreetMap contributors, and the GIS User Community

2 Background

The Port is operated by NQBP and is situated approximately four kilometres north of the Pioneer River mouth at North Mackay, on the central Queensland coast. The Port commenced operations in 1939 and has continued to develop and grow since this time. There are four operational berths and associated loading/unloading facilities. The Port is located within the Great Barrier Reef World Heritage Area but falls outside of the Great Barrier Reef Marine Park. Multiple commodities pass through the Port facilities, including fuels, refined and bulk sugar, bulk molasses, liquid chemicals, bulk fertilisers, bulk grain, general cargo and iron concentrates.

NQBP conducts maintenance dredging within the Port to maintain declared depths within the channel, swing basin and berth areas. Sedimentation of the port occurs naturally and is caused by the transportation of sediment from ocean currents, swell and tides, and cyclonic activity. These sediments require periodic removal from the navigational areas to maintain safe and efficient operational depths.

As set out in the LTDMP (WorleyParsons, 2010), there are four major dredge program for the 10 year approval with each program removing an estimated 130,000 m³ of material. Minor dredge programs are scheduled annually between major programs as part of the routine maintenance dredging program with each removing approximately 10,000 m³ of material. The first major program was conducted in 2011 with the next major programs being completed in 2014 and 2017. The next major program is scheduled to be conducted in 2019. The dredge material is placed at the approved DMPA approximately 3km north-east of the Port entrance per the conditions set out in the 10 Year Sea Dumping Permit.

NQBP has existing approvals in place for maintenance dredging within the Port, including a tenyear Sea Dumping Approval (2012-2022) and an associated and approved LTDMP. The approval requires that a sediment characterisation assessment, consistent with previous assessments, be completed every five years to ensure sediments remain suitable for on-going ocean disposal at the approved DMPA.

3 Proposed Maintenance Dredging

The NAGD requires proponents to define the location and estimated volume of dredging and dredge sediment relocation, along with the proposed methods to be utilised. Proponents are also required to provide an indication of the timing/schedule of activities. The following sections address these requirements.

3.1 Previous maintenance dredging

Investigation completed by WBM in 2004 identified that regular undocumented dredging and subsequent disposal has occurred at the Port since the early 1960's. From 1994 dredge activities were undertaken daily, averaging 40,000 m³ per annum using the Grab Bucket Dredge "James Pearce". The Trailing Suction Hopper Dredge (TSHD) 'Brisbane' commenced maintenance dredging services at the Port in 2004. In 2004, 2007 and 2013 the TSHD 'Brisbane' dredged amounts of 118,000 m³, 106,000 m³ and 108,600 m³ (Golder Associates, 2013) respectively.

3.2 Dredge volumes and footprint

To ensure continued safe and efficient port operations, maintenance dredging, to be undertaken in 2020, is proposed for the Channel, Swing basin, Berth pockets 1, 3, 4 and 5, and the Tug berth. Based upon historical dredge requirements, it is estimated that a total of 580,000 m³ over a 10 year period (commencing 2010) would be a sufficient volume to achieve appropriate maintenance dredging within the Port. It was also determined that this would be undertaken as four 120,000m³ programs using the TSHD 'Brisbane' and the minor programs (approximately 10,000m³) would be undertaken by the 'James Pearce' dredge.

The estimated volume of sediment in each of the berths has been drawn from the LTDMP (Table 3-1). The estimated maximum dredge volume of sediment to be removed at each major dredging event is estimated as **120,000m³** (WorleyParsons, 2010).

The maintenance dredging footprint applicable to this SAP includes those areas shown in Figure 1-1. The proposed management areas for the SAP, along with the design depth and estimated volume of sediment to be dredged from each area are set out in Table 3-1.

Table 3-1 Dredge areas and volume of sediment to be dredged (Golder Associates, 2013)

Dredge Area	Design Depth (mLAT)	Dredge Area (m²)	Estimated Maximum Dredge Volume (m³)
Channel	-8.7m	43,500	00.000
Swing basin	-8.5m	352,500	80,000
Berth 1	-10.8m	5,000	
Berth 3	-13.0m	10,000	27.000
Berth 4	-10.6m	2,000	27,000
Berth 5	-12.5m	10,000	
Tug berths (TB)	-6.0m	14,920	1600
Total Volume			108,600

3.3 Type of sediments to be dredged

The Golder Associates (2013) study concluded that sediments, on average, were comprised of 34% clays, 27% silt, 37% sand and 1.4% gravel. The fine portion (silt and clay) is less than what was previously described in the LTDMP which noted that sediments were comprised of approximately 80-97% silt/clays (<75µm) with the remainder being predominately fine sands and minor gravel.

3.4 Dredging methods

It is proposed to utilise the 'Brisbane' or a similar TSHD as the primary dredging and dredge sediment relocation equipment for the Port maintenance dredging. The 'James Pearce' dredge supports via periodic dredging of the berth pockets and swing basin.

3.4.1 Trailing suction hopper dredge (TSHD)

Depending on the ongoing viability and availability of the 'Brisbane' other TSHDs may be used for dredging from time to time; however, for the purposes of this SAP, the specifications and operational characteristics of the 'Brisbane' will form the baseline for dredge specification and operational environmental management.

Sediment to be dredged is removed through two suction heads, which are lowered into position on either side of the vessel. As the vessel moves slowly at around 1 – 3 knots, large pumps draw water through the heads, which entrain the sediment and transport the water/sediment mixture aboard into a central collection hopper. Each extraction run takes approximately one hour to complete within about a one hour and 40 minute dredge cycle (depending upon the DMPA location).

The sediment/water ratio of sediment delivered to the central hopper of the 'Brisbane' is typically quite low. Whilst it varies depending on the type of sediment being dredged, the sediment concentration is generally in the order of 10 - 30 % solids. To maximise dredge sediment capacity, these large volumes of water are managed using a central column weir, which is incorporated into the hopper. This arrangement allows excess water to decant from the sediment and overflow to discharge. Overflow occurs only toward the very end of the dredging run as the hopper nears capacity (typically the last ten minutes of a one hour dredging run). The capacity of the hopper is dependent on the sediment type – with volumes (including both sediment and water) approximating 2,800 m³ for fine silts and 1,700 m³ for sands (of a maximum hopper capacity of 2,900m³). Considering that more water is held in the silt matrix than sands, the dry weight cubic metres of sand able to be practically collected in each load is therefore generally greater than that in silts.

Once the dredge has filled its hopper, the vessel will then relocate the sediment to the designated DMPA. Dredged sediment is discharged below keel level to minimise turbidity generation. Each dredged sediment placement is manually logged using both satellite navigation and standard bridge equipment, and is electronically fixed using a differentially corrected global positioning system (GPS). The electronic track plot marks the start of the placement process (hopper open), and the end of the process (hopper closed). This track usually shows an arc, which the dredge follows to ensure that all dredged sediment is placed within the designated DMPA boundary. The time taken to place sediment over the DMPA is typically about 15 minutes out of the approximately 1-hour 40 minute dredge cycle.

During the dredging works, electronic logs of each dredge sediment relocation event will be maintained. At the completion of each dredge program, these logs will be available to the relevant government agencies to demonstrate compliance with permit conditions.

The TSHD undertaking dredging works at the Port will include the following minimum specifications to minimise environmental impact from dredging and dredge sediment relocation:

- Central weir discharge system
- Below keel discharge point
- Low wash hull design
- Electronic positioning system.

An Environmental Management Plan (EMP) will be developed by the dredging contractor, and implemented for maintenance dredging programs. The dredge disposal procedures, any associated monitoring arrangements and corrective actions are incorporated into the EMP. Implementation of the EMP is audited by NQBP environmental staff.

3.5 Dredged sediment relocation

3.5.1 Dredge Material Placement Ground (DMPA)

The dredged sediment from the maintenance dredging is expected to be placed at the existing DMPA located approximately 3km north-east of the Port entrance, in water depths of -11m to -14m LAT.

The continued use of the DMPA mitigates impacts from smothering through preventing the need to place dredged sediment in an area that has not been disturbed previously. The seabed of the DMPA is relatively flat and featureless and consists of silty sands. The geomorphic features of the DMPA have been altered through its historical use. The DMPA is not an area of high productivity leading to significant ecological or biological processes.

The coral communities of Round Top Island are the closest natural habitat to the DMPA that provides some biological diversity. These communities may potentially be impacted by dredge plumes; however, previous studies have shown these impacts to be minimal and of short duration (WorleyParsons 2013a). Seagrass and macroalgal communities within the ground have been identified as highly dynamic and influenced by seasonal changes (WorleyParsons 2013b)

3.5.2 Uniform dredge sediment deposition

Impacts to the DMPA and adjacent areas will be minimised through relocation of the dredge sediment in such a manner as to uniformly spread it over the area. This is achieved through deposition patterns that vary with the prevailing current direction. When currents are minimal, deposition will occur relatively uniformly over the DMPA area in arc patterns (refer Figure 3-1 left). When currents are present, deposition will occur in arcs in the up-current portion of the DMPA to consider drift of sediment as it settles (refer Figure 3-1 right).

Figure 3-1 Example of dump plot showing deposition during periods of low current (left) and high current (right)

3.6 Timing

Maintenance dredging of the existing material is proposed to occur during 2019 and is dependent on ongoing bathymetric survey.

4 Existing Information

4.1 Site history and land use

The Port is located approximately 6km north-east of the city of Mackay within the Pioneer River Catchment. The Pioneer River Catchment is approximately 1,500km² and is comprised of approximately 50% forested areas. The remaining 40% is made up of agricultural land which includes sugar cane and vegetable production as well as cattle grazing for beef production.

The Port is an artificial harbour that is enclosed by northern and southern breakwaters. This provides for four berths and handling facilities. As described previously, the Port commenced operations during 1939. Prior to European settlement, the general area of the Port consisted of a complex mosaic of coastal dune vegetation, freshwater wetlands, estuarine plant communities and rainforest areas.

The localised catchment area of the Port is primary comprised of industrial land uses. The majority of the catchment drains to the south, away from the Port and into the Pioneer River.

4.2 Previous sediment investigations

The most recent studies which characterise the sediments found in the Channel, Swing Basin Area, Berth Pockets and Tug Berth Areas within the Port and relevant to this SAP include:

- Worleyparsons, 2007. Mackay Port Authority: Port of Mackay Harbour Sediment Quality Assessment
- WorleyParsons, 2010. NQBP Mackay Harbour and Spoil Ground 2009 Sediment Characterisation Report, document number 301001-00797-00-EN-REP-0001
- Golder Associates (2013). 2013 Maintenance Dredging Sediment Characterisation Report.
 Report prepared for North Queensland Bulk Ports.

The main findings from each study are summarised in Table 4-1. Note that the surrounding marine habitats and associated environmental values and objectives for the port, dredge areas and the spoil dispersal sites have been summarised in the LTDMP. There are no significant alterations that would result in a change to these areas since the submission of the LTDMP and the identified controls in the LTDMP would continue to apply as identified.

4.2.1 Physical Characteristics

Golder Associates, 2013 indicate sediments in the Channel and Swing Basin areas were predominantly comprised of 38% sand, 32% clay, 29% silt and 1.4% gravel. Sediments in the Tug Berth were comprised 64% sand 23% clay, 12% silt and 1.1% gravel. Sediments in the berth pockets were comprised of 10% sand, 48% clay, 41% silt and 1.6% gravel. On average sediments within the Port were comprised of 34% clays, 27% silt, 37% sand and 1.4% gravel (Section 3.3).

4.2.2 Chemical Characteristics

Table 4-1 provides a summary of sediment characterisation studies completed at the Port.

Table 4-1 Historical sediment investigations of the Port of Mackay

Previous Studies	Findings	Suitability for Placement at Sea							
WorleyParsons (2007)	In 2007 sediment samples from 19 locations within the Channel and Swing Basin Dredge Area were analysed for metals, polycyclic aromatic hydrocarbons (PAHs) and organotins including tributyltin (TBT), dibutyltin (DBT) and Monobutyltin (MBT). This survey was completed under an existing SAP and in accordance with the National Ocean Disposal Guidelines for Dredged Material (Commonwealth of Australia, 2002; NODGDM). These guidelines have been superseded by the NAGD, 2009. For the purposes of comparing results, the summary of results from the 2007 sediment survey has been completed against the NAGD guidelines. The results for chemical testing for sediments within this dredge area are summarised as follows:								
	Metal concentrations were all below NAGD screening and maximum guideline levels within the dredge area								
	One location (i.e. H3) adjacent to the slipway (outside the dredge area) exceeded NAGD screening levels for arsenic, lead, copper and zinc	Yes							
	All detections of PAH compounds were below respective screening levels, except H3 where nine PAH compounds exceeded screening levels								
	• Except for locations H3 and H19, all sites reported organotin species at concentrations below laboratory levels of reporting. Location H3 reported TBT concentration well above the NAGD Sediment Quality Guidelines.								
	Based on the dataset for the dredging area only, i.e. excluding location H3, the 95% UCL of the mean for all contaminants (metals, PAHs and organotins) were below respective NAGD screening levels. The results from materials to be dredged concluded that sediments were suitable for unconfined ocean disposal.								
	In 2009 two sediment sampling programs were completed and covered two separate dredge areas, the Channel and Swing Basin Dredge Area and the Berth Pockets Dredge Area. 19 locations were sampled from the Channel and Swing Basin Dredge Area, in accordance with the SAP (WBM, 2004b) and previous sampling undertaken in 2007 (WorleyParsons, 2007). An additional 12 locations were sampled within the Berth Pockets for further information to assist in the application for a long-term Commonwealth Sea Dumping Permit (previously approved SAP did not sample within the berth pockets). The results for chemical testing within the two dredge areas are summarised as follows:								
	Channel and Swing Basin:								
	All metal concentrations within the dredge area were below respective NAGD screening levels								
	 Location H3, which is outside the dredge area, exceeded the NAGD screening level for copper 								
	Total PAHs were below the NAGD screening levels across all locations								
	Polychlorinated biphenols (PCBs), organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs) and total petroleum hydrocarbons (TPHs) were below detection at all locations								
	OCPs (i.e. DDD, DDE and DDT) were above NAGD screening levels at location H3, which is outside the dredge area. These compounds, and all other OCPs, were not detected at any location within the dredge area.								
WorleyParsons	TBT was present below the NAGD screening level at all but one location. TBT was detected above the NAGD screening level at location H3, which is outside the dredge area	Yes							
(2010)	Based on the dataset for the dredging area only (i.e. excluding location H3), the 95% UCL of the mean for all contaminants (metals, PAHs, PCBs, OPPs, OCPs, TPHs and organotins) were below respective NAGD screening levels.								
	Berth Pockets:								
	All metal concentrations were below respective NAGD screening levels								
	TPHs, OCPs, OPPs and PCBs were below detection limits at all sites								
	One location exceeded the NAGD screening levels for Total PAHs;								
	* TBT was detected at all berth sampling sites. Results of the screening level analysis (NAGD Phase 2) identified that TBT exceeded the screening level at the 95% UCL of the mean. As such, under the NAGD framework for contaminant assessment, further analysis was required for elutriate and bioavailability testing (NAGD Phase 3). Further sampling and analysis was completed for the three sites that exceeded the screening level for TBT normalised to 1%TOC (B4, B6 and B7). Fresh sediment material was collected using Van veen grab on 9 December 2009 and analysed for TOC, organotins, elutriate tributyltin and pore water TBT. Elutriate and pore water TBT analyses were completed to assess the potential release of TBT to the water column during dredging activities and potential TBT bioavailability to benthic organisms post spoil disposal. The results of this additional analysis indicated that TBT is below the ANZECC/ARMCANZ (2000) guidelines and there is low risk of TBT being bioavailable to benthic organisms following disposal.								
	In conclusion, sediments from the berth pocket dredge area were suitable for unconfined ocean placement at the approved DMPA.								

Previous Studies	Findings	Suitability for Placement at Sea
Golder Associates (2013)	 A total of 28 sites were sampled from the Channel, Swing Basin and Berth Pockets. The samples underwent analyses for total organic carbon (TOC), particle size distribution (PSD), heavy metals, organotins, PAHs, OCPs and radionuclides. The 95% UCL concentrations of all contaminants in samples from the Channel and Swing Basin area and the Berth Pockets area are below the NAGD screening levels. The 95% UCL concentrations of all contaminants in samples from the Tug Berth were less than the NAGD screening levels except for TBT which had a normalised TBT 95% UCL mean concentration of 17.8 μg Sn/kg. This is above the ISQG-Low value but less than the maximum acceptable screening limit of 80 μg Sn/kg used as the cut off point for unconfined ocean disposal. Bioavailability testing (elutriate and porewater analyses) for TBT conducted as part of the 2009 Sediment characterisation Investigation (WorleyParsons, 2010) further supported the acceptance of material from the Tug Berth for unconfined ocean disposal. 	Yes

4.3 Contamination status

The sources and history of contamination remains unchanged based upon a review of aerial imagery from 2007 onwards. Industrial land uses are the primary source of contamination for the Mackay Harbour.

Based upon the historical activities the following may be potential sources of contamination to maintenance material sediments:

- Sulphuric Acid Terminal
- Ethanol and Petroleum products tank farm
- Fuel loading wharf
- Gas Terminal
- Scrap metal storage
- Bulk sugar Terminal
- Molasses Terminal
- Tallow Terminal
- Grain Terminal
- Slipway.

4.3.1 Contaminants of concern

The following section identifies contaminants of concern for the Port and associated exemptions for other parameters based on historical data. The NAGD defines contaminants of potential concern (COPCs) and contaminants of concern (COCs) as follows:

- COPCs are those contaminants that exceed the background concentrations and the Screening Level (or elevated concentrations of contaminants for which guidelines do not exist).
- COCs are those contaminants which exceed the background concentrations and the Screening Level and for which the bioavailability, bioaccumulation or toxicity assessments indicate that significant effects from the contaminants are likely.

COPCs and their likely sources that have been identified as occurring in the Port region through site history, nearby land use and previous sediment characterisation data (Section 4.2) and are outlined in Table 4-2. However, based on the findings of sediment studies to date, none of the contaminants identified from the Port are defined as COCs.

Table 4-2 Contaminants of potential concern

Contaminants	Known or likely sources	Area of Concern		
Heavy metals: Arsenic (As), Cadmium (Cd), Copper (Cu), chromium (Cr), Silver (Ag), Lead (Pb), Nickel (Ni) and Zinc (Zn)	 Antifouling Paints from vessels and port structures Sand blasting Bauxite fines Metal fabrication Urban runoff/stormwater (minimal input) 	ChannelSwing BasinBerth PocketsTug Berths		
Organotins (TBT, DBT, MBT)	 Antifouling Paints from vessels 	ChannelSwing BasinBerth PocketsTug Berths		
PAHs	Bunker FuelsLubricantsPartially combusted hydrocarbons	Berth PocketsTug Berths		
Total Petroleum Hydrocarbons (TPH)	 Fuel transfer 	Berth PocketsTug Berths		
Organochloride pesticides (OCP)	Agricultural activitiesIndustrial activities	■ Tug Berths		
Radionuclides (Gross Alpha/Beta)	 Sandblasting 	■ Tug Berths		

Of the contaminants identified, organotins (TBT, DBT and MBT) are considered to have the greatest potential (despite its use being banned for the last decade) to be present in sediments in the Port and will be sampled from each dredge area and sampling locations. Metals will be adopted as an indicator analyte in this SAP and analysed from the same number of locations as organotins.

PAH and TPH analysis is only proposed for the tug berths and berth pockets, while radionuclides and OCP will be analysed for locations in the Tug berths.

Physical sediment characteristics including particle size distribution (PSD), settling velocity and bulk density will be analysed from all dredge location, but only a portion of locations (i.e. 50%) will be analysed. Note that TOC and moisture content will be analysed for all locations and samples.

The following list of contaminants together with the NAGD Screening level and sampling regime are summarised in Table 4-3.

Table 4-3 Proposed contaminants for laboratory analysis

Contaminants	NAGD Screening	Sampling regime
As	20 mg/kg	All dredge areas
Cd	1.5 mg/kg	All dredge areas
Cr	80 mg/kg	All dredge areas
Cu	65 mg/kg	All dredge areas
Pb	50 mg/kg	All dredge areas
Ni	21 mg/kg	All dredge areas
Zn	200 mg/kg	All dredge areas
Hg	0.15 mg/kg	All dredge areas
Organotins	9 µgSn/kg	All dredge areas
TPH	550 mg/kg	Berth Pockets & Tug berth only
Sum of PAH	10,000 μg/kg	Berth Pockets & Tug berth only
Radionuclides (Sum of gross alpha and gross beta)	35000 Bq/kg (dry wgt)	Tug berth only
ОСР	2 μg/kg	Tug berth only
тос	NA	All dredge areas
Moisture content	NA	All dredge areas
PSD Settling velocity	N/A	All dredge areas (50% of locations)

4.3.2 Exemption from testing

The NAGD 2009 states that exemptions from some or all sediment testing requirements are possible under certain circumstances, subject to approval by the determining authority. The following exemptions from testing for this SAP (in alignment with those previously requested and agreed) are requested because prior sediment characterisations, existing port operations and the absence of sources from the local catchments indicate that the current sediments are highly unlikely to be contaminated with these analytes. These exemptions have been approved previously by GBRMPA for all navigational areas of the Port.

Based upon historical non-detects and no known contaminant sources, the following contaminants are excluded in this SAP (in alignment with the 2010 SAP (WorleyParsons, 2010b) and the 2013 SAP (Golder Associates, 2013):

- Silver: Results of sampling from the channel, swing basin, approach and berth pockets have confirmed an absence of Silver at concentrations which may define these sediments as contaminated.
- Polychlorinated biphenyls (PCBs): No significant catchment based sources of PCBs exist
 within the vicinity of the Port. Results of sampling from the channel, swing basin, approach and
 berth pockets have confirmed an absence of PCBs at concentrations which may define these
 sediments as contaminated. Exemption of PCBs analysis is requested for all areas described in
 this SAP.
- Organophosphorus pesticides (OPs): The presence of OC/OPs is predominately associated
 with industrial or agricultural activities involving use or manufacture of herbicides and
 pesticides. Results of sampling from the channel, swing basin, approach and berth pockets
 have confirmed an absence of OPs at concentrations which may define these sediments as
 contaminated.

5 Sampling and Analysis of Sediments

5.1 Rationale

The sampling and analysis of sediments proposed complies with the requirements for maintenance dredging projects as outlined within Appendix D of the NAGD. The program is designed to conduct Phase II and Phase III sampling and analysis for the determination of dredge material characterisation for the purposes of unconfined ocean disposal (Figure 5-1).

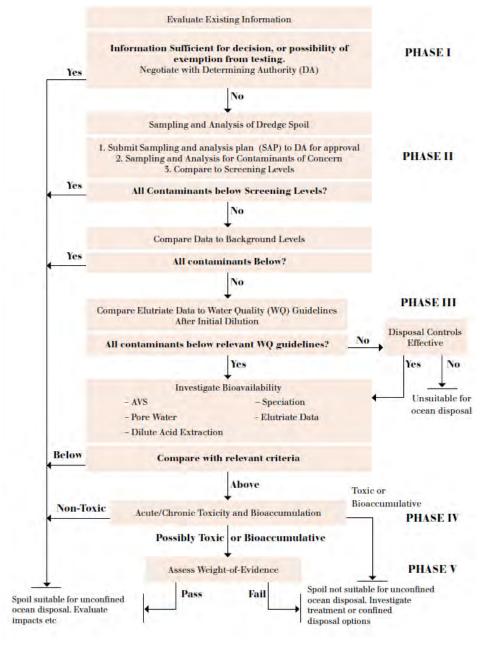


Figure 5-1 Process for the assessment of potential contaminants (NADG, Commonwealth of Australia 2009)

5.2 Sampling Locations and Horizons

The number of sampling locations is based on the anticipated dredge volumes for each dredge area in accordance with Appendix A of the NAGD, 2009. These are provided in Table 5-1. This is generally consistent with in the most recent previous sediment characterisation assessment completed by Golder Associates in 2013. This includes sampling at each maintenance dredge area within the Port: Channel and Swing Basin, Berth Pockets 1, 3, 4 & 5 and Tug Berths. Sampling will also be undertaken at reference sites (REF) and within the DMPA. The fixed sample location H3 located adjacent to the slipway will be included for consistency with previous sediment characterisation programs.

5.2.1 Channel and swing basin

The volume of maintenance dredge material estimated from the Channel and the Swing basin is 88,000m³ (Table 5-1). This equates to 16 sampling locations in accordance with the NAGD, 2009 guidelines; however, it is proposed to reduce the sampling locations by half to eight (Figure 5-2). This reduction of locations is justified as the NAGD stipulate "where good quality data for the site are already available to support the classification, the number of sample locations in the 'probably contaminated' and 'probably clean' categories may be halved". Given the footprint of the Channel and Swing basin has been well studied from previous maintenance and capital dredging programs, and results have indicated no contamination, therefore the area is considered to be 'probably clean'. Although the most recent dataset is from January 2013 therefore slightly outside of the five year currency, the rationale for this reduction is supported as the contaminant input from the catchment (refer to Section 4) have not changed since the data was collected.

Note that fixed sample location H3 is located adjacent to the slipway and is outside of the maintenance dredge areas. Although it will be sampled and analysed, it will not form part of the sediment data analysis. Location H3 is identified in Figure 5-2.

5.2.2 Berth pockets

The volume of maintenance dredge material estimated from the Berth Pockets area is 27,000m³ (Table 5-1). This equates to nine sampling locations in accordance with the NAGD; however, it is proposed to reduce the sampling locations to six (Figure 5-3). This reduction of locations is based on sediments being classified as 'probably clean' as the results of previous sediment characterisations have indicated berth pocket sediments are not contaminated.

5.2.3 Tug berths

The volume of maintenance dredge material estimated from the Tug Berths is $1,600\text{m}^3$ (Table 5-1). This equates to six sampling locations in accordance with the NAGD for the dredge volume interval of $0 - 10,000\text{m}^3$ (Figure 5-4).

5.2.4 Reference sites

Samples will be obtained from three reference sampling locations. The seafloor sediment characteristics at the reference sites will provide background levels of contaminants in which to compare the results of the sediment characteristics in the Port navigational areas. Reference sites

are selected approximately 5.8km to the southeast of the Port which is approximately 4.5km to the south of the existing DMPA (Figure 5-5). The reference sites are chosen based on the results of the predictive modelling undertaken to examine the fate of sediment dumped at the DMPA to ensure these sites remain outside the dispersion patterns reported for the DMPA. The reference sites are located in an area of similar depth to the DMPA.

5.2.5 **DMPA**

Three sampling sites will be located within the DMPA, spread evenly across the rectangular DMPA. The data from these sites are used to examine the sediment characteristics of the area to characterise any existing contamination, prior to any future placement of sediment into this area (Figure 5-5).

A summary of the number of locations according to the NAGD, 2009, the total number of grid squares required (i.e. five times the number of locations required) used to randomly select sample location and the proposed number of sampling location within each dredge area are provided in Table 5-1. The number of samples, including QA/QC sampling is provided in Table 5-2. The sampling coordinates are provided in Appendix A.

Table 5-1 Description of the areas to be dredged and sampling requirements as per NAGD (2009)

Dredge Area	Estimated Maximum Dredge Volume ²	Sampling locations required as per NADG (2009)	Number of grid squares	Sampling locations with currency from previous work	Revised number of sampling locations required
Channel and Swing Basin	80,000	16	80	No	8
Berth Pockets	27,000	9	45	No	6
Tug berths	10,000	6	30	No	6
DMPA	-	-	-	-	3
Reference	-	-	-	-	3
Slipway ³	Slipway ³ -		-	-	1
Total	117,000				27

Notes

¹ where indicated the number of sample sites has been reduced due to previous information and a classification of 'probably clean'. This methodology is acceptable under the NAGD.

 $^{^{\}rm 2}\,\text{Dredge}$ volumes and depths are based on reported figures Golder Associates, 2013

³ Sample location H3

Table 5-2: Sampling intensity and QA/QC

Dredge area	Number of locations	Primary sample numbers	10% field triplicate samples	5% field split triplicate samples	Total samples
Channel and Swing basin	8	8 ¹	1 site (2 samples)	1 site (2 samples)	12
Berth pockets	6	6 ¹	1 site (2 samples)	1 site (2 samples)	10
Tug berths	6	6	1 site (2 samples)	1 site (2 samples)	10
DMPA	3	3	1 site (2 samples)	-	5
Reference	3	3	-	-	3
Slipway	1	1	-	-	1
Totals	27	27	8	6	41

Notes

5.2.6 Sediment horizons

Sampling and analysis of maintenance sediment at the Port will target the surface horizon only, i.e. 0-0.5m. Samples will be collected using a Van-veen grab sampler deployed from the vessel. Operated from the surface, the grab sampler enables the collection of surface sediments to approximately 0.1-0.5m below the seabed. As the dredged depth is likely to be 0.5m or less for most areas, grab sampling is considered appropriate and a safe and cost-effective option for this study. This approach has been approved for previous sediment characterisation assessments.

¹ where indicated the number of sample sites has been reduced due to previous information and a classification of 'probably clean'. This methodology is acceptable under the NAGD.

Figure 5-2:
Channel and Swing Basin
Randomly Assigned Sampling
Locations

LEGEND

• Fixed sampling location

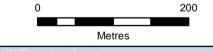
Sampling location

Sampling grid

Berths and operational areas

Swing basin

Swing basin and channel dredge area


Source Information: Port facility layout Provided by NQBP - Sept 2018 Imagery - Aug 2017 Provided by NQBP - Sept 2018

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55

Scale at A3 - 1:5,000

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC. © OpenStreetMap contributors, and the GIS User Community

Figure 5-3: **Berth Pockets Stratified Randomly Assigned Sampling** Locations

LEGEND

Sampling location

Sampling grid

Berths and operational areas

Berth pocket dredge area

Source Information: Port facility layout Provided by NQBP - Sept 2018 Imagery - Aug 2017 Provided by NQBP - Sept 2018

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:3,500

> 0 25 50 75 100 Metres

Figure 5-4: **Tug Berth Randomly Assigned Sampling** Locations

LEGEND

Sampling location

Sampling grid

Berths and operational areas

Tug berth pocket dredge area

Source Information: Port facility layout Provided by NQBP - Sept 2018 Imagery - Aug 2017 Provided by NQBP - Sept 2018

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd

© State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55

Scale at A3 - 1:2,000

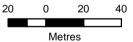


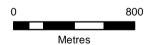
Figure 5-5:
DMPA and Reference Sites
Randomly Assigned Sampling
Locations

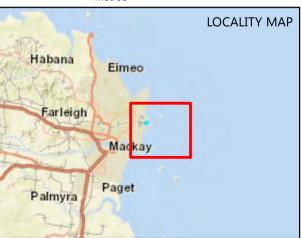
LEGEND

Sampling location

Existing Dredge Material Placement Area

Great Barrier Reef Marine Park boundary


Source Information:
Port facility layout and dredge area
Provided by NQBP - Sept 2018
Imagery - Web Service
Dept of Natural Resources and Energy
Great Barrier Reef Marine Park Boundary
Great Barrier Reef Marine Park Authority


While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018 © Australian Government 2018

Coordinate System: GDA 1994 MGA Zone 55

Scale at A3 - 1:25,000

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong). Esri Korea. Esri (Thailand). NGCC. © OpenStreetMap contributors, and the GIS User Community

5.3 Analytical Parameters

5.3.1 Phase II sediment analysis

Phase II sediment analysis will be consistent with the contaminants detailed in Section 4.3. This is outlined along with the Practical Quantitation Limits (PQLs) as detailed within the NAGD and laboratory limit of reporting (LOR) in Table 5-3. Detailed analytical summary and sampling numbers at each dredge area is provided in Table 5-4.

Table 5-3: Contaminant suites, NAGD PQLs and laboratory LORs

Contaminant suites	NAGD PQL	Laboratory LOR	Sampling location
Total metals and metalloids (As, Cd, Cr, Cu, Pb, Ni, Zn)	All 1 mg/kg Cd 0.1 mg/kg	All 1 mg/kg Cd 0.1 mg/kg	All dredge areas REF
Hg	0.01 mg/kg	0.01 mg/kg	DMPA
Organotins	1 μgSn/kg	0.5 μgSn/kg	All dredge areas REF DMPA
TPH	100 mg/kg	0.2-3 mg/kg	Berth Pockets Tug Berths REF DMPA
PAH (super ultra-trace 20 analytes)	100 μg/kg	4-5 μg/kg	Berth Pockets Tug Berths REF DMPA
Radionuclides (gross alpha and gross beta)	N/A	500 bq/kg	Tug berths
OCP (ultra-trace 21 analytes)	1 μg/kg	5 μg/kg	Tug berths
TOC	0.1%	0.1%	All dredge areas REF DMPA
Moisture content	0.1%	1%	All dredge areas REF DMPA
PSD	Size distribution (sieve and hydrometer)	1%	All dredge areas REF DMPA

Contaminant suites	NAGD PQL	Laboratory LOR	Sampling location	
Settling velocity	Rates of settlement after 50% and 90% settlement	0.01 mm/min	All dredge areas REF DMPA	

Table 5-4 Detailed analytical summary at each site and sample vessel requirements

Dredge Area	Site	Horizon	TOC and Moisture	Metals / Organotins	ТРН/РАН	ОСР	Radionuclides	PSD & settling rate	Triplicate	Split Duplicates	250ml Jars	Extra jars for potential Phase III	5 kg bag for potential porewater analysis	Zip lock Bags
	CSB-1	0.0-0.5	3	3				1	yes		6	1	anarvsis	4
	CSB-2	0.0-0.5	1	1				1			2	1		2
	CSB-3	0.0-0.5	1	1							2	1		
Channal and Swing Paris	CSB-4	0.0-0.5	1	1				1			2	1		2
Channel and Swing Basin	CSB-5	0.0-0.5	1	1							2	1		
	CSB-6	0.0-0.5	1	1				1			2	1		2
	CSB-7	0.0-0.5	1	1							2	1		
	CSB-8	0.0-0.5	3	3				3		yes	6	1		4
	BP-1	0.0-0.5	3	3	3			1	yes		6	1		4
	BP-2	0.0-0.5	1	1	1						2	1		
	BP-3	0.0-0.5	1	1	1			1			2	1		2
Berth Pockets (BP)	BP-4	0.0-0.5	1	1	1			1			2	1		2
	BP-5	0.0-0.5	1	1	1						2	1		2
	BP-6	0.0-0.5	3	3	3			3		Yes	6	1		4
	TB-1	0.0-0.5	1	1	1	1	1	1				2	1	2
	TB-2	0.0-0.5	3	3	3	3	3		yes		6	2	3	
Turn Double (TD)	TB-3	0.0-0.5	1	1	1	1	1				2	2	1	
Tug Berth (TB)	TB-4	0.0-0.5	1	1	1	1	1	1			2	2	1	2
	TB-5	0.0-0.5	1	1	1	1	1				2	2	1	
	TB-6	0.0-0.5	3	3	3	3	3	1		yes	6	2	3	4
	REF-1	0.0-0.5	1	1	1			1			2	1		2
Reference (REF)	REF-2	0.0-0.5	1	1	1			1			2	1		2
	REF-3	0.0-0.5	1	1	1			1			2	1		2
	DMPA-1	0.0-0.5	3	3	3			1	yes		6	1		4
DMPA	DMPA-2	0.0-0.5	1	1	1			1			2	1		2
	DMPA-3	0.0-0.5	1	1	1			1			2	1		2
Slipway	H-3	0.0-0.5	1	1							2	2		
Totals			41	41	28	10	10	22	4	3	82	34	10	50

5.3.2 Phase III Elutriate and Bioavailability Analysis

Any exceedance of the 95% UCL of the mean for contaminant analytes will require progress to Phase III elutriate and bioavailability testing. It is proposed to collect additional sediment material during the initial program and hold these at the laboratory if further testing is required and the samples are within holding times. Analysis would include elutriate testing, dilute acid extraction (DAE) and porewater analysis. Phase III analysis hold samples include one additional 250ml jar at all locations except for the Tug berth where 5kg of sediment will be collected. In addition, 40 litres of seawater from the DMPA will be obtained in the event further testing is needed. If samples are outside of holding times additional sediment sampling may be required.

Samples provided for potential Phase III analysis will be noted for preservation to extend the 14-day holding time for TBT and PAHs. This is important as results require analysis before determination of progress to Phase III is required.

5.4 Methods and Equipment

Sediments will be collected with a Van-veen grab (0.25m³) deployed from the sampling vessel by hand (Figure 5-6). The grab sampler is constructed of stainless steel and has an approximate grab payload of 3kg. The grab is set with a release pin on-deck. Using a pulley system, the grab sampler is deployed from the boat and lowered to the sediments on the sea floor. As the grab reaches the sediment the pressure on the pin is released and the jaws close on the sediment upon retrieval. The grab sampler is then lifted back to the surface. Once recovered to the deck, the sediment is released to a large stainless-steel bowl. Where multiple samples are required, multiple bowls are used (i.e. triplicate samples). If insufficient sample is obtained at a site, the vessel will be relocated to within 10m of the original site and the grab will be lowered again. This will be repeated until sufficient sample volumes are obtained.

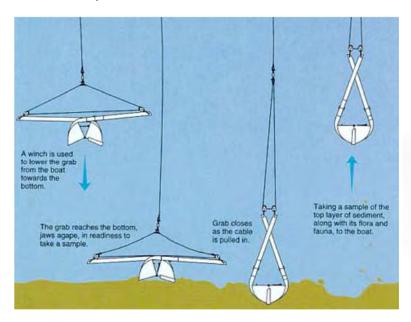


Figure 5-6 Deployment schematic and a Van-veen grab

5.4.1 Sampling Vessel

The vessel (the 'Brynda') proposed to be used for sampling is commercially registered and licensed for operation within the study area. The vessel is suitably sized for expected conditions to allow the progress of field works within a nominal sea state of 0.5m and winds to 15 knots. The vessel has a large powerful engine and an adequate shade cover. This vessel is suitable for any open water operations such as the collection of sediments from the DMPA.

5.4.2 Sampling Procedures

Field sampling procedures, conforming to *Appendix F Field and laboratory quality assurance and quality control* of NAGD, 2009 and Advisian's Quality Assurance / Quality Control (QA/QC) protocols, will be carried out to minimise the potential for cross contamination and preserve the sample integrity. Table 5-5 provides a summary of the sediment sampling activities to be undertaken.

Table 5-5 Sampling activities

Activity	Details
Sampling locations	The co-ordinates of the sampling locations will be uploaded onto a Garmin 76CSx Global Positioning System (GPS) unit with an accuracy of +/-5m. The Garmin will be used to navigate to the locations and if required, also reposition the locations due to site conditions.
Sediment sampling	Samples will be collected using a boat deployed grab sampler as described in Section 5.4.
Sediment logging	The following information is recorded at each sampling location: Name of client Sampling date General location of sample collection Sample identifiers assigned Name of the sample collector Type of sampler used Weather conditions at the time of sampling Sea state at time of sampling General comments (e.g. Wind speed, level of shipping etc.) GPS location (easting and northing) Time of sampling Water depth Photograph of sediment sample The sediment log for each grab is recorded on separate field data sheets, which describe each sample according to the following information: Colour Field texture Observed sand grain size Plasticity Moisture content of sample (e.g. Wet, moist, dry) % stones Presence of shell/shell grit Odour (e.g. marine, sulphurous). An example log sheet is provided in Appendix B.
Sediment sampling & storage	Once the sample is collected, placed into a stainless-steel mixing bowl and logged, the sample will be homogenized using powderless nitrile gloves. Homogenised sediment material is then placed into laboratory supplied 250 ml and 125 ml glass jars leaving zero head space and into zip lock bags. Label information is completed on each sample container and the containers will be stored on ice in eskies.

Activity	Details
Labelling	Sample bags and jars will be labelled with the date, the abbreviated project location (Port of Mackay), the location number / depth, sampler's initials and date of sampling. For instance, a grab sample collected at CSB-1 is labelled as follows:
	CSB-1 grab (sample I.D) NB (initials of sampler) 24/09/18 (date sampled)
Decontamination	Decontamination between samples included washing of all sampling equipment with ambient sea water and a laboratory grade detergent (Decon 90), and successive rinsing with deionised water.
Dispatch	All samples collected will be delivered to ALS Mackay daily. Here, samples will be logged into their system and stored in refrigerated storage until the sample is analysed. All testing will occur within recommended holding times. Triplicate split samples collected in the field will be dispatched by ALS to SGS in Brisbane so that inter-laboratory QC analysis can be assessed.

5.4.3 Schedule

It is proposed that field sampling will be initiated once approval of the SAP is received and a calm weather window occurs. Approximately three days is required to sample all sites.

5.4.4 Contingency Plan

There are important considerations to consider when sediment sampling at the Port:

- Sea conditions To minimise the potential of an aborted survey and the need for remobilisation, sea state forecasts will be closely considered prior to mobilising to the field. It
 should be noted that the Port area is sheltered therefore calm conditions are expected.
- Tidal conditions The tides within the Port generate strong current flow and there can be very high tidal ranges (up to 6m during spring tides). Ideally Neap tidal period will be targeted to minimise difficulties associated with positioning the vessel and retrieving grab samples.
- Priority locations Sampling within the Harbour will be undertaken as a priority while vessels
 are absent from the selected berth or during shutdown periods. Sampling in the Channel and
 Swing Basin, Reference Areas and DMPA will occur opportunistically when the weather is
 amenable to sampling.

5.5 Primary and Secondary Laboratories

Sediment analysis will be completed ALS and SGS laboratories. Both laboratories are National Association of Testing Authorities (NATA) accredited for the analyses of marine sediments. ALS is

the primary laboratory and SGS is the secondary laboratory. The secondary laboratory undertakes analysis of the split triplicate samples.

5.5.1 Laboratory Methods

Samples will be analysed for the physical characteristics and contaminant substances of concern as identified in Table 4-2. Detailed descriptions of these analyses by the primary laboratory (ALS) are provided in Appendix C.

5.6 QAQC

5.6.1 Quality Control – Field Sampling

The methods to be employed in field sampling quality assurance to ensure validity of the analyses results is ensured by:

- Using suitably qualified environmental staff and support personnel experienced in using a Vanveen Grab, field supervision and sediment logging
- Samples will be contained in appropriately cleaned, pre-treated and labelled sample containers that are provided by the analytical laboratory
- Samples will be kept cool (4°C) after sampling and during transport, stored in eskies with ice packs
- Transportation of samples under chain of custody documentation
- All sampling equipment, including mixing bowls etc. will be decontaminated between samples
 and sampling locations via a decontamination procedure involving a wash with ambient sea
 water and a laboratory grade detergent (Decon 90), and successive rinsing with deionised
 water.

5.6.2 Quality Control – Analysis

NAGD (Appendix F) specifies that field quality control samples should include (per batch of 20 or fewer):

- In cases where volatile substances such as some chlorinated organics are being determined, one container (trip) blank filled with inert material, for example chromatographic sand;
- On 10 per cent of locations, one field triplicate (that is three separate samples taken at the same location) to determine the variability of the sediment physical and chemical characteristics;
- On five per cent of locations, samples should be thoroughly mixed then split into three
 containers to assess laboratory variation (split triplicate), with one of the three samples sent to
 a second (reference) laboratory for analysis; and
- One sample that has been analysed in a previous batch (if more than one batch is sent) to determine the analytical variation between batches.

In consideration of these requirements, the following QAQC protocol has been developed for this study.

- Trip blanks (one per sampling batch) will be taken and analysed as volatile organic carbon compounds, such as chlorinated hydrocarbons are being assessed.
- On 10% of locations (i.e. one location in each dredge management area, total of four locations) (refer to Table 5-4) one field triplicate (i.e. three separate samples taken at the same location) is collected to determine the variability of the sediment chemical and physical characteristics
- On 5% of locations (refer to Table 5-4, total of three locations) samples will be thoroughly mixed then split into three different containers to access laboratory variation, with one of the three (triplicate) samples sent to a second (reference) laboratory for analysis. All field triplicate (split) samples will be 'blind' labelled in the field with QC field numbers, which do not relate to sampling location names.
- All samples will be dispatched to the laboratory daily, but held in a cold room until all samples
 are collected to complete a single batch. However, if the program is undertaken over an
 extended timeframe, and there is a risk of holding time breach, one inter-batch duplicate will
 be collected and a second batch of samples submitted.

The analytical laboratory will need to comply with the laboratory and quality assurance procedures specified in Appendix F of the NAGD, which require the laboratory quality assurance program to include the following quality control samples to be analysed in each batch (10-20 samples). This is in addition to its own internal procedures to ensure analytical procedures are conducted properly and produce reliable results:

- one laboratory blank sample (sand) to be tested for volatiles
- for metals, one Standard Reference Material (SRM)
- for organics, one sample spiked with the parameters being determined at a concentration within the linear range of the method being employed to determine the recovery rate of the analytical method is adequate or not
- one replicate sample to determine the precision of the analysis; the standard deviation and coefficient of variation should be documented.

A validation of the analytical data obtained will be undertaken in accordance with Appendix F of the NAGD. This analysis will confirm that the analysis undertaken is of suitable quality to assess dredge material for suitability for sea disposal. This validation will include a consideration of results for blanks, standards and spikes, and replicate and duplicate samples. Relative standard deviations (RSD) between quality control triplicates and relative percent difference (RPD) for split triplicate samples will be compared against relevant criteria.

5.7 Analysis of Results

5.7.1 Phase II – Sediment Analysis for Total Concentrations

Chemical concentration levels for sediments will be compared against the screening levels listed in Appendix A, Table 2 of the NAGD, to assess whether the sediment is suitable for placement at sea or if further testing is required (e.g. elutriate, bioavailability and/or direct toxicity assessment).

The assessment against NAGD criteria involves the comparison of mean concentrations at the 95%UCL of the mean to the NAGD screening levels. Detections for organic parameters will be

normalised to % TOC where the recorded TOC value was within the range of 0.2 – 10%. If TOC values are outside this range, then the highest or lowest of the 0.2 – 10% range will be adopted as appropriate. For the purposes of calculation of normalised values and of 95% UCLs, values below detection limit will be set to one-half of the laboratory LOR in accordance with NAGD recommendations. For organic concentrations below detection, the half detection levels are not normalised to % TOC. Means, standard deviations and 95% UCLs will be calculated for each of the dredge areas. Means and 95% UCLs will be not calculated for contaminant groups that will be found to have concentrations below detection levels at all sampling locations.

The methods used to calculate the 95% UCLs will be based on the methods required in Appendix A of the NAGD (P38, Comparison of Data to Screening Levels as described below.

Normality of datasets will be determined using Shapiro-Wilks test and quantile-quantile plots in ProUCL Version 5 developed by the United States Environmental Protection Agency (USEPA 2016). Datasets will be determined as being either normal or log-normal, or neither in their distributions. Normal datasets will be analysed using the 1-tailed student's t UCL. Log-normal datasets will be analysed using non-parametric jacknife analysis as recommended in the NAGD. Datasets that will be neither normal nor log-normally distributed will be also analysed using non-parametric jacknife analysis.

According to the NAGD, if the 95%UCL values for all substances are below relevant screening levels, it is unlikely that contaminant substance concentrations in the sediment will have an adverse effect on organisms living in or on that sediment. Sediments are therefore considered non-toxic and there are no chemical obstacles to unconfined sea disposal.

5.7.2 Phase III – Elutriate Analysis

If required, elutriate analyses will be undertaken using sediments prepared in a 1:4 suspension of seawater from the DMPA.

The elutriate concentrations at the 95th percentile for the relevant dredge area will be compared with the relevant toxicant trigger level in the ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, following the procedures outlined in Appendix A of the NAGD (Commonwealth of Australia, 2009). Allowance will be made for dilution at the DMPA when comparing elutriate concentrations against guideline values.

5.7.3 Phase III – Bioavailability Analysis

If required, DAE results for metals will be analysed similar to total sediments within the difference being that the metals will be extracted using a weak acid (1M HCl). For organic contaminants, collected sediment samples would be pressure squeezed or centrifuged to provide the chemical laboratory with porewater for chemical analysis. The 95th percentile of porewater concentrations would be compared with the relevant trigger level in the ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, following the procedures outlined in Appendix A of the NAGD (Commonwealth of Australia, 2009).

5.7.4 Phase IV – Toxicity Analysis

If required, toxicity testing will be undertaken using appropriate tests, as recommended by a laboratory experienced in toxicity testing.

5.8 Reporting

A report detailing the following information will be prepared after the sampling and analysis program once laboratory results are completed:

- Executive Summary
- Introduction and description of the study area
- Details of the sampling methodology (including any deviation from the approved SAP)
- A figure showing the sampling locations
- Physical descriptions of the sediment samples, based upon photographs and sediment logs
- Descriptions of any observations or anomalies during sampling and/or analysis
- Table of laboratories used and the analytical methods employed
- QA/QC procedures and results
- Summary table of results for each parameter analysed
- Comparison and interpretation of results
- Conclusions
- Recommendations
- Appendices containing sampling data sheets, grab sheets and images, all laboratory reports and associated QAQC reporting.

The report will provide summary data tables with colour-coded results for any parameters for which the Screening Levels are exceeded at the 95%UCL of the mean. The original laboratory reports will be provided as appendices. Mapping will be undertaken for all parameters where the screening level is exceeded.

6 References

Commonwealth of Australia (2009) National Assessment Guidelines for Dredging. Commonwealth of Australia, Canberra.

Golder Associates (2013). 2013 Maintenance Dredging – Sediment Characterisation Report: Prepared for North Queensland Ports Corporation of Queensland.

Norwegian Pollution Control Authority, 2008. Screening of Polyfluorinated Organic Compounds at Four Fire Training Facilities in Norway (TA-2444/2008). Worleyparsons, 2007. Mackay Port Authority: Port of Mackay Harbour – Sediment Quality Assessment

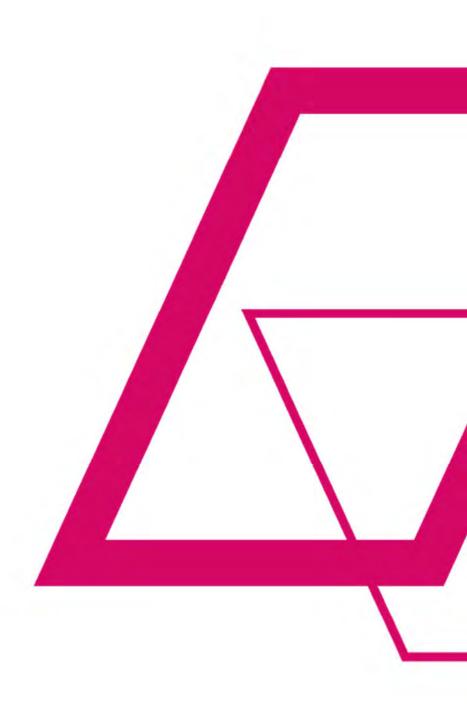
WorleyParsons, 2010. NQBP Mackay Harbour and Spoil Ground 2009 Sediment Characterisation Report, document number 301001-00797-00-EN-REP-0001

WorleyParsons, 2010. North Queensland Bulk Ports (NQBP) Long Term Dredge Management Plan (LTDMP) Mackay Port 2010-2020, document number 301001-00797-00-EN-REP-0003 (WorleyParsons, 2010)

WorleyParsons (2013a). Dudgeon Point Coal Terminals Project – Sediment Characterisation Report for Marine Support Facilities – Revision C, report – 301001-01385-00-PM-REP-0004-069. WorleyParsons 12 April 2013

WorleyParsons (2013b). Dudgeon Point Coal Terminals Project: Dredge Material Relocation Options Report. Draft Unpublished Report prepared for North Queensland Bulk Ports.

Appendix A Sampling location coordinates


					Decimal	Degrees	Degrees, De	cimal Minutes
Site	Grid ID / Sample Location ID	GPS ID	Easting (MGA55)	Northing (MGA55)	Longitude (GDA94)	Latitude (GDA94)	Longitude (GDA94)	Latitude (GDA94)
CSB-1 T1								
CSB-1 T2	SB_02	SB_01	731410	7664228	149.2278109	-21.10845956	149° 13.669'	-21° 6.508'
CSB-1 T3								
CSB-2	SB_16	SB_02	731635	7664358	149.2299582	-21.10725736	149° 13.797'	-21° 6.435'
CSB-3	SB_40	SB_03	731485	7664553	149.2284887	-21.10551575	149° 13.709'	-21° 6.331'
CSB-4	SB_45	SB_04	731860	7664553	149.2320967	-21.10546827	149° 13.926'	-21° 6.328'
CSB-5	SB_50	SB_05	731035	7664618	149.2241503	-21.10498576	149° 13.449'	-21° 6.299'
CSB-6	SB_52	SB_06	731185	7664618	149.2255935	-21.10496682	149° 13.536'	-21° 6.298'
CSB-7	SB_58	SB_07	731635	7664618	149.2299231	-21.10490991	149° 13.795'	-21° 6.295'
CSB-8								
D1	SB_79	SB_08	731410	7664748	149.2277408	-21.10376465	149° 13.664'	-21° 6.226'
D2								
BP-1 T1								
BP-1 T2	B1_02	B1_01	731554	7664151	149.2292063	-21.10913246	149° 13.752'	-21° 6.548'
BP-1 T3								
BP-2	B1_07	B1_02	731404	7664191	149.2277577	-21.1087903	149° 13.665'	-21° 6.527'
BP-3	B3_14	B3_01	731293	7664470	149.2266582	-21.10629166	149° 13.599'	-21° 6.377'
BP-4	B4_01	B4_01	731156	7664516	149.2253334	-21.10589074	149° 13.520'	-21° 6.353'
BP-5	B5_08	B5_01	731541	7664783	149.2289968	-21.10342928	149° 13.740'	-21° 6.206'
BP-6								
D3	B5_10	B5_02	731341	7664808	149.2270692	-21.10322886	149° 13.624'	-21° 6.194'
D4								
TB-1	TB_02	TB_01	731182	7664202	149.2256212	-21.10872646	149° 13.537'	-21° 6.524'
TB-2 T1								
TB-2 T2	TB_05	TB_02	731272	7664202	149.2264871	-21.10871509	149° 13.589'	-21° 6.523'
TB-2 T3								
TB-3	TB_12	TB_03	731332	7664222	149.2270617	-21.10852693	149° 13.624'	-21° 6.512'
TB-4	TB_18	TB_04	731212	7664262	149.2259018	-21.10818095	149° 13.554'	-21° 6.491'
TB-5	TB_26	TB_05	731302	7664282	149.226765	-21.107989	149° 13.606'	-21° 6.479'
TB-6								
D5	TB_29	TB_06	731242	7664302	149.226185	-21.10781601	149° 13.571'	-21° 6.469'
D6								
REF-1	REF_01	REF_01	735470	7660787	149.26734831800	-21.13900944550	149° 16.041'	-21° 8.341'
REF-2	REF_02	REF_02	735110	7661279	149.26382206600	-21.13460923840	149° 15.829'	-21° 8.077'
REF-3	REF_03	REF_03	734746	7661772	149.26024952400	-21.13021239410	149° 15.615'	-21° 7.813'
DMPA-1 T1								
DMPA-1 T2	SG_01	SG_01	735827	7665589	149.2701256	-21.09560723	149° 16.208'	-21° 5.736'
DMPA-1 T3								
DMPA-2	SG_02	SG_02	735468	7666082	149.26660046000	-21.09120697910	149° 15.996'	-21° 5.472'
DMPA-3	SG_03	SG_03	735103	7666574	149.26302901300	-21.08681008650	149° 15.782'	-21° 5.209'
H-3	H-3	H-3	731070	7664300	149.22453417300	149.22453417300	149° 13.472'	-21° 6.471'

NOTES:	
Triplicate samples	Triplicate split sample

Appendix B Example log sheet

301001-02095 - Port of Mackay Sediment Investigation

CLIENT: North Queensland Bulk Ports	
DATE OF Grab/Core:	
TIME OF Grab/Core:	
Collection Detai	Is
General location of core of sampling location	
Site/location number	
Sample ID's assigned	
Easting/Longitude of core location (from onboard GPS)	
Northing/Latitude of core location (from onboard GPS)	
Water depth at core location	
Sample collector	
Type of core sampler	
Sea state at time of coring	
Conditions (e.g. weather, sea state, wind speed, level of shipping traffic)	
General comments	

301001-02095 – Port of Mackay Sediment Investigation

Sediment Description

S	ample Location								
Da	te / Sample Time								
I	Depth retained								
Strata Change (m)	Colour* (refer AS1726)	Field texture**	Moist.	Consist	Sand grain size	Plasticity	% stones	Shell/grit and/or biota	Odour

^{*} Colour: black, white, grey, red, brown, orange, yellow, green, blue. Pale, dark, mottled. e.g. grey mottled red-brown clay.

^{**}Field Texture: clay, silt, sand, gravel, etc

North Queensland Bulk Ports Maintenance Dredging Sampling and Analysis Plan

Appendix C Laboratory Methods

Contaminants	Analytical method reference	Method summary	NAGD PQL	Laboratory LOR
Total metals and metalloids (As, Cd, Cr, Cu, Pb, Ni, Zn)	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI- EN/EG020. EG020-SD	The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.	All 1 mg/kg Cd 0.1 mg/kg	All 1 mg/kg Cd 0.1 mg/kg
Hg	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) EG035T-LL	FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)	0.01 mg/kg	0.01 mg/kg
Organotins	In house: Referenced to USEPA SW 846 - 8270D EP090	Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quanitified against an established calibration curve.	1 μgSn/kg	0.5 μgSn/kg
TPH / TRH	In house: Referenced to USEPA SW 846 - 8270D EP071-SD	Extracts are analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)	100 mg/kg	0.2-3 mg/kg
PAH (super ultra trace 20 analytes)	In house: Referenced to USEPA 8270D EP132-SD	GCMS Capillary column, SIM mode using large volume programmed temperature vaporisation injection.	100 µg/kg	4-5 μg/kg
Radionuclides (gross alpha and gross beta)	In house: Referenced to ISO 9697 / CSN 757611 EA250	Determination of Gross Alpha and Beta activity in soil and sediment by Thick Source method. An appropriate mass of sample is dried and pulverised prior to direct activity counting. (If required, Potassium may be determined separately and results corrected accordingly for 40K.) Analysis is performed by ALS (Czech Republic) who hold technical accreditation #1163 for Gross alpha and beta activity under CAI. CAI are a European accreditation body, equivalent to NATA in Australila and recognised internationally by NATA under ILAC.	N/A	500 bq/kg
OCP (ultra trace 21 analytes)	In house: Referenced to USEPA Method 3640 (GPC cleanup),3620 (Florisil), 8081/8082 (GC/µECD/µECD)	This technique is compliant with NEPM (2013) Schedule B(3)	1 μg/kg	5 μg/kg
TOC	EP131A In house C-IR17	Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants /	0.1%	0.1%

North Queensland Bulk Ports Maintenance Dredging Sampling and Analysis Plan

Contaminants	Analytical method reference	Method summary	NAGD PQL	Laboratory LOR
		catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.		
Moisture content	In-house EA055	A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).	0.1%	1%
PSD	AS 1289 3.6.3 (2003) EA150H	Particle Size Analysis by Hydrometer according to AS1 <u>289.3.6.3</u> - 2003	Size distribution (sieve and hydrometer)	1%
Soil / sediment density	AS 1289.3.5.1-2006 EA152	Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method		
Settling velocity	In-house EA151-20	Determination of the settling rate of sediment or sludge in 20% solids slurries in seawater	Rates of settlement after 50% and 90% settlement	0.01 mm/min

Maintenance Dredging Sediment Characterisation Report Port of Mackay

Appendix B Sediment Logs

General Location of Sam	pling	Port of Mackay – Swing Basin			
Site Number		SB_02 (T1)			
Date/Sample Time		24/09/18, 1500			
Water Depth at Site		~11m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions		S-E Winds 15-20kts			
Comments					
		PSD (%)			
Gravel (19)	Sand (52	<u>'</u>	Silt & Clay (29)		

Shell/Grit/

Biota

5-10%

Odour

Marine/Faint Sulphur

%

Stones

5%

Plasticity

Unknown due to

Strata Change (m)	Co	lour	Field Tex	cture	Moist.	Coi		
0 – 0.1	Dark G	rey	Clayey SAND Wet					
General Location	of Sam	pling	Port of Mackay -	– Swing Basin				
Site Number			SB_02 (T2)					
Date/Sample Tir	ne		24/09/18, 1500					
Water Depth at	Site		~11m					
Type of Core Sai	mpler		Grab					
Depth Retained			0.1m					
Weather Conditi	ions		S-E Winds 15-20kts					
Comments								
			PSD (%)					
Gravel (15)		Sand (42	1)	Silt & Clay (43)			
Strata Change	Co	lour	Field Tex	kture	Moist.	Coi		

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark Grey	Sandy CLAY	Wet	Soft	Fine to Coarse	Unknown due to saturation	1%	5-10%	Marine/Faint Sulphur

Sand Grain Size

Coarse

Consist.

General Location of Sam	pling	Port of Mackay – Swing Basin			
Site Number		SB_02 (T3)			
Date/Sample Time		24/09/18, 1500			
Water Depth at Site		~11m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions		S-E Winds 15-20kts			
Comments					
		PSD (%)			
Gravel (6)	Gravel (6) Sand (37		Silt & Clay (57)		

Strata Change (m)	Co	lour	Field Tex	cture	Moist.	Coi		
0 – 0.1	Dark G	rey	Sandy CLAY	Sandy CLAY Wet				
General Location	n of Sam	pling	Port of Mackay -	- Swing Basin				
Site Number			SB_16					
Date/Sample Tir	ne		24/09/18, 1530	0				
Water Depth at	Site		~11m					
Type of Core Sar	mpler		Grab					
Depth Retained			0.1m					
Weather Condition	ions		S-E Winds 15-20)kts				
Comments								
			PSD (%)					
Gravel (<1)		Sand (8)		Silt & Clay (92)			
Strata Change	Co	lour	Field Tex	cture	Moist	Coi		

Unknown due to

Stones

1%

Biota

5-10%

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark Grey	Silty CLAY	Wet	Soft	Fine	Unknown due to saturation	0.5%	<10%	Marine/Faint Sulphur

Consist.

Fine to Coarse

Odour

Marine/Faint

Sulphur

General Location of Sam	pling	Port of Mackay – Swing Basin			
Site Number		SB_40			
Date/Sample Time		24/09/18, 1600			
Water Depth at Site		~11m			
Type of Core Sampler	Sampler Grab				
Depth Retained		0.1m			
Weather Conditions		Choppy, S-E Winds 15-20kts			
Comments					
		PSD (%)			
Gravel (1)	Sand (16	5)	Silt & Clay (83)		

Stones

Nil

Biota

5-10%

Strata Change (m)	Co	lour	Field Tex	cture	ure Moist.		
0 – 0.1	Dark G	rey	Silty CLAY		Wet		
General Location	of Sam	Port of Mackay – Swing Basin					
Site Number			SB_45				
Date/Sample Tir	ne		24/09/18, 1630				
Water Depth at	Site		~11m				
Type of Core Sai	mpler		Grab				
Depth Retained			0.1m				
Weather Condition	ions		Choppy, S-E Winds 15-20kts				
Comments							
			PSD (%)				
Gravel (3)		Sand (86)	Silt & Clay (11)		
Ctuata Changa	C-	la	Field To.	4	Maint	Car	

Unknown due to

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark Grey	Clayey Silty SAND	Wet	Soft	Fine/Medium	Unknown due to saturation	Nil	20-40%	Marine/Faint Sulphur

Consist.


Nil

Odour

Marine/Faint Sulphur

General Location of San	npling	Port of Mackay – Swing Basin			
Site Number		SB_50			
Date/Sample Time		24/09/18, 1710			
Water Depth at Site		~8m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions	Weather Conditions		Choppy, S-E Winds 15-20kts		
Comments					
		PSD (%)			
Gravel (<1%)	Sand (95%	6)	Silt & Clav (5%)		

Strata Change (m)	Colour	Field ⁻	Геxture	Moist.	Cons		
0 – 0.1	Sand	Silty SAND		Moist			
General Location	n of Sampling	Port of Macka					
Site Number		SB_52					
Date/Sample Tir	ne	24/09/18, 1745					
Water Depth at	Site	~8m					
Type of Core Sar	mpler	Grab					
Depth Retained		0.1m					
Weather Condition	ions	Choppy, S-E Winds 15-20kts					
Comments							
		PSD (%)					
Gravel (<1)	Sand (24)		Silt & Clay (76))			
					_		

Unknown due to

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty sandy CLAY	Wet	Soft	Nil	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Consist.

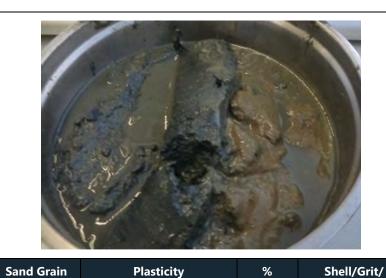
Fine/Medium

Odour

Marine/Faint

Sulphur

Biota


10%

Stones

Nil

General Location of S	ampling	Port of Mackay – Swing Basin		
Site Number		SB_58		
Date/Sample Time		24/09/18, 1	815	
Water Depth at Site		~8m		
Type of Core Sampler	f Core Sampler			
Depth Retained		0.1m		
Weather Conditions		Choppy, S-E Winds 15-20kts		
Comments				
		PSD (%)		
Gravel (<1%)	Sand (34%)		Silt & Clay (66%)	

Strata Change (m)	Colou	ır	Field T	exture	Moist.	Co		
0 – 0.1	Grey and brown	Si	ilty CLAY		Wet	Soft		
General Location	General Location of Sampling			Port of Mackay – Swing Basin				
Site Number	ite Number SB_79							
Date/Sample Tir	24/09/18, 1830							
Water Depth at Site			~8m					
Type of Core Sai	mpler	G	Grab					
Depth Retained		0.	0.1m					
Weather Conditions			Choppy, Wind 10-15kts					
Comments								
		PS	PSD (%)					
Gravel (<1)	Sar	nd (23)		Silt & Clay (77))			

Unknown due to

Stones

Nil

Biota

Organics, 5-10%

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey and brown	Silty CLAY	Wet	Soft	Nil	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Consist.

Size

Nil

Odour

Marine/Faint

Sulphur

General Location of Sar	npling	Port of Mackay – Tug Berth		
Site Number		TB_02		
Date/Sample Time		25/09/18, 0830		
Water Depth at Site		~6m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Wind 10-15kts		
Comments				
		PSD (%)		
Gravel (1%)	Sand (29%	6)	Silt & Clay (70%)	

%

Stones

Nil

Shell/Grit/

Biota

5-10%

Odour

Marine/Faint

Sulphur

Plasticity

Unknown due to

saturation

Strata Change (m)		Colour		Field Texture Moist.			
0 – 0.1	Grey	/	Silty sar	Wet	Soft		
General Location	n of S	ampling	Port of		200		
Site Number			TB_05 ((T1)			
Date/Sample Time			25/09/1	8, 0830			
Water Depth at Site			~6m				
Type of Core Sa	mple		Grab		40		
Depth Retained			0.1m				
Weather Condit	ions		Wind 10-15kts				
Comments							
			PSD (%)				
Gravel (2%)		Sand (24%)		Silt & Clay (74%)			
Strata Change		Colour		Field Texture	Moist.	Co	

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Sand Grain

Size

Fine

Consist.

General Location of Sampling		Port of Mackay – Tug Berth		
Site Number		TB_05 (T2)		
Date/Sample Time		25/09/18, 1015		
Water Depth at Site		~6m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Wind 15-20kts		
Comments				
		PSD (%)		
Gravel (NT) Sand (NT)		<u> </u>	Silt & Clay (NT)	

Unknown due to

Stones

Nil

Biota

5-10%

Strata Change (m)	Col	lour	Field Text	Moist.	C		
0 – 0.1	Dark gr	ey	Silty sandy CLAY	Soft			
General Location of Sampling			Port of Mackay –	Tug Berth			
Site Number			TB_05 (T3)				
Date/Sample Time			25/09/18, 1015				
Water Depth at Site			~6m				
Type of Core Sa	mpler		Grab				
Depth Retained			0.1m				
Weather Condit	ions		Wind 15-20kts				
Comments			Large amount of sand compared to T1 & T2				
			PSD (%)				
Gravel (NT)		Sand (N	T)	Silt & Clay			

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Size

Fine

Odour

Marine/Faint

Gravel (<1%)

General Location of Sampling	Port of Mackay – Slipway				
Site Number	H-3				
Date/Sample Time	25/09/18, 1015				
Water Depth at Site	~6m				
Type of Core Sampler	Grab				
Depth Retained	0.1m				
Weather Conditions	Wind 15-20kts				
Comments					
PSD (%)					

Silt & Clay (40%)

Sand (60%)

Biota

Marine/Faint

<10%

Strata Change (m)	Colour	Field	Co				
0 – 0.1	Dark grey and brown	Silty sandy Cl	Soft				
General Location	of Sampling	Port of Macka	Port of Mackay – Tug Berth				
Site Number		TB_12					
Date/Sample Tin	ne	25/09/18, 110					
Water Depth at S	Site	~1m					
Type of Core San	npler	Grab					
Depth Retained		0.1m					
Weather Condition	ons	Wind 10-15kt					
Comments							
		PSD (%)					
Gravel (<1%)	Sand (12%	5)	Silt & Clay (88%))			

Nil

Unknown due

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey and brown	Silty CLAY	Wet	Soft	Nil	Unknown due to saturation	Nil	<10%	Marine/Faint Sulphur

Size

Fine

General Location of Sampling		Port of Mackay – Tug Berth		
Site Number		TB_18		
Date/Sample Time		25/09/18, 1120		
Water Depth at Site		~12m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Wind 15-20kts		
Comments				
		PSD (%)		
Gravel (%) Sand (13%</th <th colspan="2">%) Silt & Clay (87%)</th>		%) Silt & Clay (87%)		

% Stones

Shell/Grit/

Biota

5-10%

Odour

Marine/Faint Sulphur

Plasticity

Unknown due

Strata Change (m)	Co	lour	Field 1	Moist.	Co		
0 – 0.1	Grey ar brown	nd	Silty CLAY	Soft			
General Location of Sampling			Port of Mackay – Tug Berth				
Site Number			TB_26				
Date/Sample Time			25/09/18, 1210				
Water Depth at Site			~11m				
Type of Core San	npler		Grab				
Depth Retained			0.1m				
Weather Conditions			Wind 10-15kts				
Comments							
			PSD (%)				
Gravel (<1%)		Sand (4%)	Silt & Clay (96%)			

Nil

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty CLAY	Wet	Soft	Nil	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Consist.

Sand Grain

Size

Nil

General Location of Sampling		Port of Mackay – Tug Berth		
Site Number		TB_29		
Date/Sample Time		25/09/18, 1300		
Water Depth at Site		~10m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Wind 15-20kts		
Comments				
		PSD (%)		
Gravel (<1%)	Sand (119	%)	Silt & Clay (89%)	

% Stones

Shell/Grit/

Biota

5-10%

Odour

Marine/Faint Sulphur

Plasticity

Unknown due

Strata Change (m)	Colour	Field	Texture	Moist.	Co		
0 – 0.1	Grey	Silty CLAY	Silty CLAY Wet				
General Location	of Sampling	Port of Mackay	y – Berth No. 1				
Site Number		B1_07					
Date/Sample Tim	ie	25/09/18, 1400	25/09/18, 1400				
Water Depth at S	iite	~13.9m	~13.9m				
Type of Core San	npler	Grab	Grab				
Depth Retained		0.1m	0.1m				
Weather Condition	ons	Calm-slightly o	Calm-slightly choppy, fine weather				
Comments							
		PSD (%)	PSD (%)				
Gravel (3%)	Sand	(27%)	Silt & Clay (70%)				

Nil

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	1%	5-10%	Marine/Faint Sulphur

Sand Grain

Size

Nil

Consist.

General Location of Sampling		Port of Mackay – Berth No. 1		
Site Number		B1_02 (T1)		
Date/Sample Time		26/09/18, 0900		
Water Depth at Site		~13.9m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Choppy, Wind 11kts		
Comments				
	F	PSD (%)		
Gravel (1%)	Sand (36%))	Silt & Clay (63%)	

Strata Change (m)	C	olour	Field	Moist.	Co			
0 – 0.1	Grey		Silty Sandy Cl	Wet	Soft			
General Location of Sampling			Port of Macka	ay – Berth No. 1				
Site Number			B1_02 (T2)					
Date/Sample Time			26/09/18, 0900					
Water Depth at Site			~13.9m					
Type of Core San	npler		Grab					
Depth Retained			0.1m					
Weather Condition	ons		Choppy, Wind 11kts					
Comments								
F			PSD (%)					
Gravel (<1%)		Sand (11%)	Silt & Clay (89%)				

1%

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty Sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	1%	5-10%	Marine/Faint Sulphur

Consist.

Size

Unknown due

Fine

Odour

Marine/Faint Sulphur

Biota

5-10%

Gravel (<1%)

General Location of Sampling	Port of Mackay – Berth No. 1					
Site Number	B1_02 (T3)					
Date/Sample Time	26/09/18, 0900					
Water Depth at Site	~13.9m					
Type of Core Sampler	Grab					
Depth Retained	0.1m					
Weather Conditions	Choppy, Wind 11kts					
Comments						
PSD (%)						

Sand (11%)

Silt & Clay (89%)

Strata Change (m)	Colou	ır	Field Tex	Moist.	Co		
0 – 0.1	Grey		Silty Sandy CLAY	Wet	Soft		
General Location	of Samplin	g	Port of Mackay – Berth No. 3				
Site Number			B3_14				
Date/Sample Time			26/09/18, 1115				
Water Depth at S	ite		~17m				
Type of Core San	npler		Grab				
Depth Retained			0.1m				
Weather Condition	ons		Choppy, Wind 7-11kts				
Comments							
I			PSD (%)				
Gravel (%) Sand (17</td <td colspan="4">7%) Silt & Clay (83%)</td>			7%) Silt & Clay (83%)				

1%

Unknown due

to saturation

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey and brown	Silty Sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Consist.

Size

Fine

Odour

Marine/Faint Sulphur

Biota

5-10%

General Location of Samp	ling	Port of Mackay – Berth No. 4			
Site Number		B4_01			
Date/Sample Time		26/09/18, 1155			
Water Depth at Site		~17m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions		Choppy, Wind 10-15kts			
Comments					
		PSD (%)			
Gravel (<1%)	Sand (11	%)	Silt & Clay (89%)		

Strata Change (m)	Col	our	Field Te	Moist.	C		
0 – 0.1	Grey		Silty Sandy CLAY	Wet	Soft		
General Location	of Samp	ling	Port of Mackay – Berth No. 5				
Site Number			B5_10				
Date/Sample Time			26/09/18, 1255				
Water Depth at Site			~16m				
Type of Core San	npler		Grab				
Depth Retained			0.1m				
Weather Condition	ons		Choppy, Wind 15-20kts				
Comments							
I			PSD (%)				
Gravel (<1%) Sand (26			6%) Silt & Clay (74%)				

Unknown due

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty Sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	<10%	Sulphur/marine

Consist.

Size

Fine

Odour

Marine/Faint Sulphur

Biota

5-10%

General Location of Samp	ling	Port of Mackay – Berth No. 5				
Site Number		B5_08				
Date/Sample Time		26/09/18, 1315				
Water Depth at Site		~12m				
Type of Core Sampler		Grab				
Depth Retained		0.1m				
Weather Conditions		Choppy, Wind 15-20kts				
Comments						
		PSD (%)				
Gravel (1%)	Sand (27	' %)	Silt & Clay (72%)			

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	20-40%	Sulphur/marine

General Location of Sampling		Port of Mackay – Reference Site			
Site Number		REF_01			
Date/Sample Time		27/09/18, 0730			
Water Depth at Site		Estimated at <18m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions		Choppy, Wind 7kts			
Comments					
	ı	PSD (%)			
Gravel (31%) Sand (68		3%)	Silt & Clay (1%)		

% Stones

10%

Plasticity

Shell/Grit/

Biota

Odour

Strata Change (m)	(m)		Field Te	Moist.	Coi			
0 – 0.1	Sand		Gravelly silty SAN	D	Moist	Loose		
General Location	of Samp	ling	Port of Mackay –					
Site Number			REF_02					
Date/Sample Tim	ate/Sample Time			27/09/18, 0745				
Water Depth at S	ater Depth at Site			Estimated at <18m				
Type of Core San	npler		Grab					
Depth Retained			0.1m					
Weather Condition	Weather Conditions			Choppy, Wind 7kts				
Comments			Some coral/plant	material				
			PSD (%)					
Gravel (12%)	•	Sand (83	3%) Silt & Clay (2%)					

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Sand	SAND with shell	Moist	Loose	Coarse	Nil	2%	40%	Sulphur/marine

Consist.

Sand Grain

Size

Coarse

Gravel (NT)

General Location of Sampling	Port of Mackay – Reference Site
Site Number	REF_03
Date/Sample Time	27/09/18, 0800
Water Depth at Site	Estimated at <18m
Type of Core Sampler	Grab
Depth Retained	0.1m
Weather Conditions	Choppy, Wind 7kts
Comments	
	PSD (%)

Sand (NT)

Silt & Clay (NT)

Strata Change (m)	Col	lour	Field Te	Co				
0 – 0.1	Sand		Gravelly SAND wi	th shell	Moist	Loose		
General Location	General Location of Sampling			Port of Mackay – Spoil Ground				
Site Number			SG_01					
Date/Sample Tin	e/Sample Time			27/09/18, 0930				
Water Depth at S	Water Depth at Site			Estimated at <30m				
Type of Core San	npler		Grab					
Depth Retained			0.1m					
Weather Condition	ons		Choppy, Wind 8kt					
Comments								
			PSD (%)					
Gravel (67%)		Sand (30	1%)					

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Brown	Sandy GRAVEL with shell	Wet	Dense	Coarse	Nil	30%	70%	Sulphur/marine

Consist.

Size

Odour

Sulphur/marine

Biota

General Location of Samp	ling	Port of Mackay – Spoil Ground		
Site Number		SG_02		
Date/Sample Time		27/09/18, 0945		
Water Depth at Site		Estimated at <27r	n	
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Choppy, Wind 8kts		
Comments				
	ı	PSD (%)		
Gravel (36%)	Sand (63	%)	Silt & Clay (1%)	

% Stones

Plasticity

Nil

Shell/Grit/

Biota

30%

Odour

Sulphur/marine

Strata Change (m)			Field Te	Moist.	Cor			
0 – 0.1	Brown /	gray	SAND	Wet	Dense			
General Location of Sampling			Port of Mackay –	Port of Mackay – Spoil Ground				
Site Number			SG_03					
Date/Sample Tin	ample Time 27/09/18, 1015							
Water Depth at S	Water Depth at Site			Estimated at <27m				
Type of Core San	npler		Grab					
Depth Retained			0.1m					
Weather Condition	ons		Choppy, Wind 5kts					
Comments	Comments							
			PSD (%)					
Gravel (33%)		Sand (66	6%) Silt & Clay (1%)					

No photo taken

70%

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Brown	Gravelly SAND	Wet	Dense	Coarse	Nil	20%	80%	Sulphur/marine

Consist.

Sand Grain

Size

Coarse

Maintenance Dredging Sediment Characterisation Report Port of Mackay

Appendix C Laboratory Certificates

CERTIFICATE OF ANALYSIS

Work Order : **EB1823470** Page : 1 of 32

Amendment : 3

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4000

 Telephone
 : --- Telephone
 : +61 7 3552 8662

 Project
 : 301001.02018 - Port of Mackay Sediment Sampling
 Date Samples Received
 : 27-Sep-2018 09:00

Order number : Date Analysis Commenced : 04-Oct-2018

C-O-C number : ---- Issue Date

Sampler : NICHOLAS BAINTON

Site : ---

Quote number : BN/185/18

No. of samples received : 58

No. of samples analysed : 40

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

: 11-Dec-2018 10:52

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD	
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW	
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW	
Kim McCabe	Senior Inorganic Chemist	Brisbane External Subcontracting, Stafford, QLD	
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD	
Matt Frost	Senior Organic Chemist	Brisbane Organics, Stafford, QLD	
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Inorganics, Stafford, QLD	

Page : 2 of 32

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

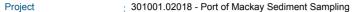
Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.


Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- EP080: Sample 'B1 07' shows poor matrix spike recovery due to matrix interference. Confirmed by re-extraction and re-analysis.
- EP090 Organotin: Sample 'OP2 42 / 0.5-1.0' shows poor matrix spike recovery for MBT due to matrix interference. Confirmed by re-extraction and re-analysis.
- Radiological work undertaken by ALS Laboratory Group (Ceska Lipa) under CAI accreditation No. L1163. Report No. PR18A9577. NATA and CAI accreditations' are both recognised under ILAC.
- EA151: Due to limited sample volume settleability results were unable to be reported for samples #56, #57 and #58.
- EA150H: Soil particle density results for sample #34 fell outside the scope of AS1289.3.6.3. Results should be scrutinised accordingly.
- EA150H: Soil particle density results for sample #14 fell outside the scope of AS1289.3.6.3. Results should be scrutinised accordingly.
- EA150H: Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1 2006 was unable to be performed on samples #4, #8, #11 to #23, #30, #31, #36 as insufficient sample was supplied by the client. Typical sediment SPD values used for calculations and consequently NATA endorsement does not apply to hydrometer results.
- Specialty Organics analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- EP132B-SD: Poor duplicate precision due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- Amendment (4/12/2018): This report has been amended and re-released to allow the removal of data for samples 40-43, 56-58 as well as Chromium suite, EC, Soluble Salts, Chloride and Organic Matter data. All analysis results are as per the previous report.
- Amendment (11/12/2018): This report has been amended and re-released to allow the removal of pH Field/Fox data. All analysis results are as per the previous report.
- Amendment (7/12/2018): This report has been amended following changes to the analytical data reported. The quality system is being utilised to resolve this issue. The specific data affected includes gross alpha/beta results.
- EP132B-SD: Poor matrix spike recovery due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EP080-SD: The LOR for meta- & para-Xylene has been raised due to high moisture content.
- EP090 Organotin: Sample 'B1 02 (T3)', 'B1 07' and 'SB 02 (T2)' shows poor matrix spike recovery for MBT due to matrix interference. Confirmed by re-extraction and re-analysis.
- EP080-SD: Sample 'B1 02 (T3)' shows poor matrix spike recovery due to high moisture content. Confirmed by re-extraction and re-analysis.
- EP090 Organotin: High LCS recovery deemed acceptable as all associated analyte results are less than LOR
- EP071-SD: It is acknowledged that the duplicate for sample 'TB 05 (T1)' falls outside the RPD for >C10 C40 calculated fraction. However, all the measured components of the Sum are within acceptance criteria.
- EG020-SD (Total Metals in Sediments by ICP-MS): Sample EB1823470-013 shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- EG020-SD (Total Metals Sediments by ICP-MS): Sample EB1823470 001 (SB_02 (T1)) shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme

Page : 3 of 32

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.
- Radiological work undertaken by ALS Laboratory Group (Ceska Lipa) under CAI accreditation No. L1163. Report No. \$\$. NATA and CAI accreditations' are both recognised under ILAC.
- EA151: ALS does not hold NATA accreditation for Settleability.

: 4 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB_02 (T1)	SB_02 (T2)	SB_02 (T3)	SB_16	SB_40
	Cli	ent sampli	ng date / time	24-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-001	EB1823470-002	EB1823470-003	EB1823470-004	EB1823470-005
· ·				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	34.2	50.7	47.0	67.2	64.4
EA150: Particle Sizing								
+75µm		1	%	71	56	42	3	
+150µm		1	%	68	53	39	2	
+300µm		1	%	65	49	36	1	
+425µm		1	%	61	45	33	<1	
+600µm		1	%	52	38	26	<1	
+1180µm		1	%	30	23	12	<1	
+2.36mm		1	%	14	12	3	<1	
+4.75mm		1	%	7	8	<1	<1	
+9.5mm		1	%	5	7	<1	<1	
+19.0mm		1	%	<1	<1	<1	<1	
+37.5mm		1	%	<1	<1	<1	<1	
+75.0mm		1	%	<1	<1	<1	<1	
EA150: Soil Classification based on Pa	article Size							
Clay (<2 μm)		1	%	16	13	31	17	
Silt (2-60 µm)		1	%	13	30	26	75	
Sand (0.06-2.00 mm)		1	%	52	42	37	8	
Gravel (>2mm)		1	%	19	15	6	<1	
Cobbles (>6cm)		1	%	<1	<1	<1	<1	
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.52	1.34	1.21	1.11	
ø Underflow Solids		0.1	%	67.2	59.8	55.3	53.0	
ø Settling Rate @ 50% of Settlement		0.001	mm/min	18.0	18.8	14.4	15.4	
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	18.0	10.6	8.80	8.00	
Ø Clarity		-	-	Clear	Clear	Clear	Clear	
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.53	1.51	1.36	1.13	
ø Underflow Solids		0.1	%	65.5	55.0	52.5	49.1	
ø Settling Rate @ 50% of Settlement		0.001	mm/min	9.20	6.60	7.00	2.20	
ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.600	0.400	6.40	0.067	
ø Clarity		-	-	Clear	Clear	Clear	Clear	
EA152: Soil Particle Density								
Ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.54	2.49	2.48		

5 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB_02 (T1)	SB_02 (T2)	SB_02 (T3)	SB_16	SB_40
	Cli	ent sampli	ng date / time	24-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-001	EB1823470-002	EB1823470-003	EB1823470-004	EB1823470-005
				Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sedimen	ts by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	13.6	6.98	5.48	8.05	6.86
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	8.4	17.6	13.1	25.2	21.6
Copper	7440-50-8	1.0	mg/kg	9.0	15.9	10.9	16.5	14.6
Lead	7439-92-1	1.0	mg/kg	6.6	11.5	9.0	15.3	14.2
Nickel	7440-02-0	1.0	mg/kg	8.0	10.3	7.4	14.4	11.8
Zinc	7440-66-6	1.0	mg/kg	18.6	37.5	27.2	46.1	39.9
EG035T: Total Recoverable Mercur	y by FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01	0.02	0.01	0.04	0.02
EP003: Total Organic Carbon (TOC)	in Soil							
Total Organic Carbon		0.02	%	0.54	0.83	0.95	1.57	1.23
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	<1	<1	<1
Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	0.7	<0.5	<0.5	<0.5
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	61.7	64.3	69.6	74.1	70.7

: 6 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB_45	SB_50	SB_52	SB_58	SB_79
	Cli	ient sampli	ng date / time	24-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-006	EB1823470-007	EB1823470-008	EB1823470-009	EB1823470-010
•				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	35.3	21.0	63.1	58.5	59.7
EA150: Particle Sizing								
+75µm		1	%	82		14		18
+150µm		1	%	48		6		7
+300µm		1	%	21		2		3
+425µm		1	%	14		1		2
+600µm		1	%	9		<1		2
+1180µm		1	%	5		<1		<1
+2.36mm		1	%	2		<1		<1
+4.75mm		1	%	1		<1		<1
+9.5mm		1	%	<1		<1		<1
+19.0mm		1	%	<1		<1		<1
+37.5mm		1	%	<1		<1		<1
+75.0mm		1	%	<1		<1		<1
EA150: Soil Classification based on Page 1	article Size							
Clay (<2 µm)		1	%	5		34		36
Silt (2-60 µm)		1	%	6		42		41
Sand (0.06-2.00 mm)		1	%	86		24		23
Gravel (>2mm)		1	%	3		<1		<1
Cobbles (>6cm)		1	%	<1		<1		<1
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.50		1.04		1.18
Ø Underflow Solids		0.1	%	66.6		37.0		23.4
ø Settling Rate @ 50% of Settlement		0.001	mm/min	26.0		4.60		2.40
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	19.6		0.058		0.108
Ø Clarity		-	-	Clear		Clear		Clear
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.69		1.14		1.16
ø Underflow Solids		0.1	%	59.2		19.8		23.0
ø Settling Rate @ 50% of Settlement		0.001	mm/min	15.4		0.050		0.050
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	6.00		0.008		0.006
ø Clarity		-	-	Clear		Clear		Clear
EA152: Soil Particle Density								
Ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.59				2.50

7 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			SB_45	SB_50	SB_52	SB_58	SB_79
	Cli	ent sampli	ng date / time	24-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-006	EB1823470-007	EB1823470-008	EB1823470-009	EB1823470-010
				Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sedimen	its by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	5.12	3.93	6.70	5.72	6.39
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	7.9	3.9	21.9	16.9	21.0
Copper	7440-50-8	1.0	mg/kg	5.4	2.7	16.2	12.2	15.1
Lead	7439-92-1	1.0	mg/kg	5.8	3.2	13.8	11.0	11.2
Nickel	7440-02-0	1.0	mg/kg	4.5	2.9	11.9	9.4	11.8
Zinc	7440-66-6	1.0	mg/kg	17.0	12.7	43.1	33.6	40.8
EG035T: Total Recoverable Mercur	ry by FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.02	0.02	0.02
EP003: Total Organic Carbon (TOC)) in Soil							
Total Organic Carbon		0.02	%	1.40	0.22	1.11	1.22	1.08
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	<1	<1	<1
Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	49.6	56.6	70.8	142	71.0

: 8 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			D1	B1_02 (T1)	B1_02 (T2)	B1_02 (T3)	B1_07
	Ci	lient sampli	ng date / time	24-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1823470-011	EB1823470-013	EB1823470-014	EB1823470-015	EB1823470-016
•				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%	60.0	59.7	69.2	68.2	61.8
EA150: Particle Sizing								
+75µm		1	%	16	28	2	2	
+150µm		1	%	6	18	<1	<1	
+300µm		1	%	2	8	<1	<1	
+425µm		1	%	1	4	<1	<1	
+600µm		1	%	<1	2	<1	<1	
- +1180μm		1	%	<1	1	<1	<1	
+2.36mm		1	%	<1	<1	<1	<1	
+4.75mm		1	%	<1	<1	<1	<1	
+9.5mm		1	%	<1	<1	<1	<1	
+19.0mm		1	%	<1	<1	<1	<1	
+37.5mm		1	%	<1	<1	<1	<1	
+75.0mm		1	%	<1	<1	<1	<1	
EA150: Soil Classification based on Pa	article Size							
Clay (<2 μm)		1	%	36	28	23	22	
Silt (2-60 µm)		1	%	37	35	66	67	
Sand (0.06-2.00 mm)		1	%	27	36	11	11	
Gravel (>2mm)		1	%	<1	1	<1	<1	
Cobbles (>6cm)		1	%	<1	<1	<1	<1	
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.04	1.04	1.05	1.04	
Ø Underflow Solids		0.1	%	36.4	40.8	30.8	30.1	
ø Settling Rate @ 50% of Settlement		0.001	mm/min	2.20	2.60	0.333	0.333	
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.067	0.217	0.027	0.020	
Ø Clarity		-	-	Clear	Clear	Clear	Clear	
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.16	1.15	1.11	1.11	
ø Underflow Solids		0.1	%	21.0	30.6	24.9	20.8	
ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.250	0.050	0.033	0.009	
ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.004	0.015	0.009	0.009	
ø Clarity		-	-	Clear	Clear	Clear	Clear	
EA152: Soil Particle Density								
Ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3			2.40	2.58	

9 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	D1	B1_02 (T1)	B1_02 (T2)	B1_02 (T3)	B1_07
·	CI	ent sampli	ng date / time	24-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1823470-011	EB1823470-013	EB1823470-014	EB1823470-015	EB1823470-016
·				Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	6.68	7.94	9.70	9.22	6.80
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	21.2	22.0	32.2	30.1	22.3
Copper	7440-50-8	1.0	mg/kg	16.1	30.1	18.5	18.0	21.9
Lead	7439-92-1	1.0	mg/kg	13.6	10.9	15.2	14.2	16.0
Nickel	7440-02-0	1.0	mg/kg	12.2	12.2	16.3	15.3	13.1
Zinc	7440-66-6	1.0	mg/kg	41.8	83.0	59.0	56.8	57.9
EG035T: Total Recoverable Mercury b	y FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.02	0.02	0.03	0.03	0.02
EP003: Total Organic Carbon (TOC) in	Soil							
Total Organic Carbon		0.02	%	0.93	0.75	0.86	0.90	0.73
EP080/071: Total Recoverable Hydroc			ne					
>C10 - C16 Fraction		3	mg/kg		6	14	15	6
>C16 - C34 Fraction		3	mg/kg		31	69	67	30
>C34 - C40 Fraction		5	mg/kg		10	34	30	12
>C10 - C40 Fraction (sum)		3	mg/kg		47	117	112	48
>C10 - C16 Fraction minus Naphthalene		3	mg/kg		6	14	15	6
(F2)								
P080-SD / EP071-SD: Total Petroleun	n Hydrocarbons							
C6 - C9 Fraction		3	mg/kg		<3	<3	<3	<3
C10 - C14 Fraction		3	mg/kg		6	14	15	6
C15 - C28 Fraction		3	mg/kg		22	44	45	21
C29 - C36 Fraction		5	mg/kg		16	50	45	16
C10 - C36 Fraction (sum)		3	mg/kg		44	108	105	43
P080-SD / EP071-SD: Total Recovera	ble Hvdrocarbons							
C6 - C10 Fraction	C6_C10	3	mg/kg		<3	<3	<3	<3
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	3.0	mg/kg		<3.0	<3.0	<3.0	<3.0
(F1)								
P080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg		<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg		<0.2	<0.2	<0.2	<0.2
Ethylbenzene	100-41-4	0.2	mg/kg		<0.2	<0.2	<0.2	<0.2
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg		<0.4	<0.4	<0.4	<0.4
ortho-Xylene	95-47-6	0.2	mg/kg		<0.2	<0.2	<0.2	<0.2

: 10 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	D1	B1_02 (T1)	B1_02 (T2)	B1_02 (T3)	B1_07
	Cli	ient sampli	ing date / time	24-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1823470-011	EB1823470-013	EB1823470-014	EB1823470-015	EB1823470-016
•				Result	Result	Result	Result	Result
P080-SD: BTEXN - Continued								
Total Xylenes		0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg		<0.2	<0.2	<0.2	<0.2
Naphthalene	91-20-3	0.2	mg/kg		<0.2	<0.2	<0.2	<0.2
P090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	<1	<1	<1
Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	<0.5	<0.5	<0.5
P132B: Polynuclear Aromatic I	Hvdrocarbons							
Naphthalene	91-20-3	5	μg/kg		16	<5	<5	12
2-Methylnaphthalene	91-57-6	5	μg/kg		<5	<5	<5	<5
Acenaphthylene	208-96-8	4	μg/kg		5	<4	<4	<5
Acenaphthene	83-32-9	4	μg/kg		14	<4	<4	<5
Fluorene	86-73-7	4	μg/kg		12	<4	<4	<5
Phenanthrene	85-01-8	4	μg/kg		99	<4	<4	10
Anthracene	120-12-7	4	μg/kg		12	<4	<4	7
Fluoranthene	206-44-0	4	μg/kg		210	6	7	18
Pyrene	129-00-0	4	μg/kg		159	6	6	15
Benz(a)anthracene	56-55-3	4	μg/kg		82	<4	4	11
Chrysene	218-01-9	4	μg/kg		66	<4	<4	13
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg		58	4	<4	9
Benzo(k)fluoranthene	207-08-9	4	μg/kg		33	4	<4	6
Benzo(e)pyrene	192-97-2	4	μg/kg		32	<4	<4	6
Benzo(a)pyrene	50-32-8	4	μg/kg		46	<4	<4	8
Perylene	198-55-0	4	μg/kg		21	<4	<4	12
Benzo(g.h.i)perylene	191-24-2	4	μg/kg		26	<4	<4	6
Dibenz(a.h)anthracene	53-70-3	4	μg/kg		7	<4	<4	5
Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg		24	<4	<4	6
Coronene	191-07-1	5	μg/kg		6	<5	<5	<5
Sum of PAHs		4	μg/kg		928	20	17	144
P080-SD: TPH(V)/BTEX Surrog	ates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%		68.2	58.8	64.0	66.3
Toluene-D8	2037-26-5	0.2	%		57.5	53.4	52.2	65.9
4-Bromofluorobenzene	460-00-4	0.2	%		77.4	64.2	77.0	84.2

: 11 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	D1	B1_02 (T1)	B1_02 (T2)	B1_02 (T3)	B1_07
	Cli	ient sampli	ing date / time	24-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1823470-011	EB1823470-013	EB1823470-014	EB1823470-015	EB1823470-016
				Result	Result	Result	Result	Result
EP090S: Organotin Surrogate - 0	Continued							
Tripropyltin		0.5	%	77.6	90.9	101	98.5	72.9
EP132T: Base/Neutral Extractab	le Surrogates							
2-Fluorobiphenyl	321-60-8	10	%		78.6	83.1	79.3	81.4
Anthracene-d10	1719-06-8	10	%		106	96.1	93.7	106
4-Terphenyl-d14	1718-51-0	10	%		85.7	82.5	78.9	83.1

: 12 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	B3_14	B4_01	B5_08	B5_10	D3
	CI	ient sampli	ng date / time	26-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-017	EB1823470-018	EB1823470-019	EB1823470-020	EB1823470-021
•				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	5-110°C)							
Moisture Content		0.1	%	65.0	69.4	58.2	67.3	68.2
EA150: Particle Sizing								
+75µm		1	%	10	3		4	4
+150µm		1	%	5	2		<1	<1
+300µm		1	%	3	<1		<1	<1
+425µm		1	%	2	<1		<1	<1
+600µm		1	%	1	<1		<1	<1
+1180µm		1	%	<1	<1		<1	<1
+2.36mm		1	%	<1	<1		<1	<1
+4.75mm		1	%	<1	<1		<1	<1
+9.5mm		1	%	<1	<1		<1	<1
+19.0mm		1	%	<1	<1		<1	<1
+37.5mm		1	%	<1	<1		<1	<1
+75.0mm		1	%	<1	<1		<1	<1
EA150: Soil Classification based on Pa	article Size							
Clay (<2 µm)		1	%	40	37		42	29
Silt (2-60 μm)		1	%	43	52		32	56
Sand (0.06-2.00 mm)		1	%	17	11		26	15
Gravel (>2mm)		1	%	<1	<1		<1	<1
Cobbles (>6cm)		1	%	<1	<1		<1	<1
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.07	1.05		1.06	1.06
Ø Underflow Solids		0.1	%	35.8	29.8		32.7	32.5
Ø Settling Rate @ 50% of Settlement		0.001	mm/min	3.20	2.60		2.60	4.20
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.133	0.092		0.133	0.025
Ø Clarity		-	-	Clear	Clear		Clear	Clear
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.12	1.09		1.11	1.12
Ø Underflow Solids		0.1	%	25.0	26.1		31.1	33.1
Ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.670	0.050		0.050	0.017
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.024	0.016		0.015	0.019
ø Clarity		-	-	Clear	Clear		Clear	Clear
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	8.42	8.96	6.98	8.05	7.66

: 13 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	B3_14	B4_01	B5_08	B5_10	D3
·	CI	ient sampli	ng date / time	26-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-017	EB1823470-018	EB1823470-019	EB1823470-020	EB1823470-021
•				Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sediments	by ICPMS - Continu	ed						
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	24.7	28.5	20.4	24.4	22.0
Copper	7440-50-8	1.0	mg/kg	16.0	19.8	16.1	17.6	17.0
Lead	7439-92-1	1.0	mg/kg	13.0	15.4	11.9	14.2	13.2
Nickel	7440-02-0	1.0	mg/kg	13.6	16.1	12.2	14.5	13.5
Zinc	7440-66-6	1.0	mg/kg	48.3	58.3	41.8	50.0	48.7
EG035T: Total Recoverable Mercury b	ov FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.02	0.03	0.02	0.02	0.02
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	0.98	1.20	0.82	0.88	0.87
					1.20	0.02	0.00	0.07
EP080/071: Total Recoverable Hydroc >C10 - C16 Fraction	arbons - NEPW 201	3 Fraction	mg/kg	8	6	4	6	5
>C16 - C34 Fraction		3	mg/kg	44	22	17	27	18
>C34 - C40 Fraction		5		19	8	8	10	6
>C10 - C40 Fraction (sum)		3	mg/kg mg/kg	71	36	29	43	29
· ,		3	mg/kg	8	6	4	6	5
>C10 - C16 Fraction minus Naphthalene (F2)		3	ilig/kg	0	0	4	0	5
EP080-SD / EP071-SD: Total Petroleun C6 - C9 Fraction		3	mg/kg	<3	<3	<3	<3	<3
C10 - C14 Fraction		3	mg/kg	8	6	4	6	5
C15 - C28 Fraction		3		29	17	12	20	14
C29 - C36 Fraction		5	mg/kg	29	10	10	14	8
		3	mg/kg	64	33	26		27
^ C10 - C36 Fraction (sum)		3	mg/kg	64	33	26	40	21
EP080-SD / EP071-SD: Total Recovera								
C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	<3	<3	<3
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	3.0	mg/kg	<3.0	<3.0	<3.0	<3.0	<3.0
(F1)								
EP080-SD: BTEXN						0.5	0.5	
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

: 14 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	B3_14	B4_01	B5_08	B5_10	D3
,	Cli	ent sampli	ing date / time	26-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-017	EB1823470-018	EB1823470-019	EB1823470-020	EB1823470-021
·			•	Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	<1	<1	<1
Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	1.4	<0.5	<0.5
EP132B: Polynuclear Aromatic H	vdrocarbons							
Naphthalene	91-20-3	5	μg/kg	11	15	10	12	16
2-Methylnaphthalene	91-57-6	5	μg/kg	<5	<5	<5	<5	<5
Acenaphthylene	208-96-8	4	μg/kg	<5	<5	<5	<5	<5
Acenaphthene	83-32-9	4	μg/kg	<5	<5	<5	<5	<5
Fluorene	86-73-7	4	μg/kg	<5	5	<5	<5	<5
Phenanthrene	85-01-8	4	μg/kg	7	10	13	9	10
Anthracene	120-12-7	4	μg/kg	<5	<5	<5	<5	<5
Fluoranthene	206-44-0	4	μg/kg	10	19	28	14	16
Pyrene	129-00-0	4	μg/kg	8	17	24	11	13
Benz(a)anthracene	56-55-3	4	μg/kg	<5	10	18	6	7
Chrysene	218-01-9	4	μg/kg	5	10	15	8	8
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg	6	11	18	8	8
Benzo(k)fluoranthene	207-08-9	4	μg/kg	<5	6	9	<5	<5
Benzo(e)pyrene	192-97-2	4	μg/kg	<5	7	11	<5	<5
Benzo(a)pyrene	50-32-8	4	μg/kg	<5	9	15	5	5
Perylene	198-55-0	4	μg/kg	11	16	15	13	14
Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<5	7	11	<5	<5
Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<5	<5	<5	<5	<5
Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<5	7	10	<5	<5
Coronene	191-07-1	5	μg/kg	<5	<5	<5	<5	<5
^ Sum of PAHs		4	μg/kg	58	149	197	86	97
EP080-SD: TPH(V)/BTEX Surroga	tes							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	86.5	66.9	62.9	72.1	79.0
Toluene-D8	2037-26-5	0.2	%	62.2	56.3	50.0	62.0	67.5
4-Bromofluorobenzene	460-00-4	0.2	%	79.0	72.9	68.2	79.3	82.8
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	90.0	84.9	82.6	88.7	80.9

: 15 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	B3_14	B4_01	B5_08	B5_10	D3
	Cli	ient sampli	ng date / time	26-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-017	EB1823470-018	EB1823470-019	EB1823470-020	EB1823470-021
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extracta	able Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	98.5	77.8	85.2	80.4	88.3
Anthracene-d10	1719-06-8	10	%	101	107	103	101	108
4-Terphenyl-d14	1718-51-0	10	%	81.9	82.7	83.3	78.1	84.2

: 16 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_02	TB_05 (T1)	TB_05 (T2)	TB_05 (T3)	TB_12
	Cli	ent sampli	ng date / time	25-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-023	EB1823470-024	EB1823470-025	EB1823470-026	EB1823470-027
,				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		0.1	%	63.7	62.0	58.5	57.1	67.3
EA150: Particle Sizing								
+75µm		1	%	20				
+150µm		1	%	15				
+300µm		1	%	9				
+425µm		1	%	7				
+600µm		1	%	4				
+1180µm		1	%	1				
+2.36mm		1	%	<1				
+4.75mm		1	%	<1				
+9.5mm		1	%	<1				
+19.0mm		1	%	<1				
+37.5mm		1	%	<1				
+75.0mm		1	%	<1				
EA150: Soil Classification based on P	article Size							
Clay (<2 μm)		1	%	34				
Silt (2-60 μm)		1	%	36				
Sand (0.06-2.00 mm)		1	%	29				
Gravel (>2mm)		1	%	1				
Cobbles (>6cm)		1	%	<1				
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.06				
Ø Underflow Solids		0.1	%	33.7				
ø Settling Rate @ 50% of Settlement		0.001	mm/min	2.00				
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.050				
Ø Clarity		-	-	Clear				
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.14				
ø Underflow Solids		0.1	%	21.5				
ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.050				
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.003				
ø Clarity		-	-	Clear				
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	7.48	7.00	7.56	6.58	8.27

: 17 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_02	TB_05 (T1)	TB_05 (T2)	TB_05 (T3)	TB_12
	CI	ient sampli	ng date / time	25-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-023	EB1823470-024	EB1823470-025	EB1823470-026	EB1823470-027
,				Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sediments	by ICPMS - Continu	ed						
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	26.1	19.5	20.2	15.8	24.6
Copper	7440-50-8	1.0	mg/kg	26.2	20.3	20.8	18.9	22.3
Lead	7439-92-1	1.0	mg/kg	15.3	12.6	12.7	11.3	15.3
Nickel	7440-02-0	1.0	mg/kg	15.6	11.1	11.3	9.3	14.4
Zinc	7440-66-6	1.0	mg/kg	60.2	48.9	49.6	42.6	55.3
EG035T: Total Recoverable Mercury b	ov FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.02	0.03	0.03	0.02	0.03
EP003: Total Organic Carbon (TOC) in	Soil							
Total Organic Carbon		0.02	%	0.80	1.18	0.74	0.71	0.99
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns					
>C10 - C16 Fraction		3	mg/kg	5	7	5	5	4
>C16 - C34 Fraction		3	mg/kg	25	64	32	45	22
>C34 - C40 Fraction		5	mg/kg	9	30	16	20	12
>C10 - C40 Fraction (sum)		3	mg/kg	39	101	53	70	38
>C10 - C16 Fraction minus Naphthalene		3	mg/kg	5	7	5	5	4
(F2)								
EP080-SD / EP071-SD: Total Petroleun	n Hydrocarbons							
C6 - C9 Fraction		3	mg/kg	<3	<3	<3	<3	<3
C10 - C14 Fraction		3	mg/kg	5	6	5	5	4
C15 - C28 Fraction		3	mg/kg	19	42	22	30	14
C29 - C36 Fraction		5	mg/kg	12	41	18	26	12
^ C10 - C36 Fraction (sum)		3	mg/kg	36	89	45	61	30
EP080-SD / EP071-SD: Total Recovera	ble Hydrocarbons							
C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	<3	<3	<3
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	3.0	mg/kg	<3.0	<3.0	<3.0	<3.0	<3.0
(F1)								
EP080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

: 18 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_02	TB_05 (T1)	TB_05 (T2)	TB_05 (T3)	TB_12
	CI	ient sampli	ng date / time	25-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-023	EB1823470-024	EB1823470-025	EB1823470-026	EB1823470-027
				Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	1	1	<1	2	<1
Tributyltin	56573-85-4	0.5	μgSn/kg	2.5	5.3	1.7	3.6	0.8
EP131A: Organochlorine Pesticides								
Aldrin	309-00-2	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
alpha-BHC	319-84-6	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
beta-BHC	319-85-7	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
delta-BHC	319-86-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4`-DDD	72-54-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4`-DDE	72-55-9	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
4.4`-DDT	50-29-3	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
	0-2							
Dieldrin	60-57-1	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
alpha-Endosulfan	959-98-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
beta-Endosulfan	33213-65-9	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endosulfan sulfate	1031-07-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
^ Endosulfan (sum)	115-29-7	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin	72-20-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin aldehyde	7421-93-4	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Endrin ketone	53494-70-5	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Heptachlor	76-44-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Heptachlor epoxide	1024-57-3	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Hexachlorobenzene (HCB)	118-74-1	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
gamma-BHC	58-89-9	0.25	μg/kg	<0.25	<0.25	<0.25	<0.25	<0.25
Methoxychlor	72-43-5	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
cis-Chlordane	5103-71-9	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
trans-Chlordane	5103-74-2	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
^ Total Chlordane (sum)		0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
Oxychlordane	27304-13-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	<0.50

: 19 of 32 : EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_02	TB_05 (T1)	TB_05 (T2)	TB_05 (T3)	TB_12
·	Cli	ient sampli	ng date / time	25-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-023	EB1823470-024	EB1823470-025	EB1823470-026	EB1823470-027
·				Result	Result	Result	Result	Result
EP132B: Polynuclear Aromatic Hyd	rocarbons							
Naphthalene	91-20-3	5	μg/kg	15	20	18	30	14
2-Methylnaphthalene	91-57-6	5	μg/kg	7	<5	<5	7	<5
Acenaphthylene	208-96-8	4	μg/kg	80	45	5	51	<5
Acenaphthene	83-32-9	4	μg/kg	53	4	<5	8	<5
Fluorene	86-73-7	4	μg/kg	128	20	<5	25	<5
Phenanthrene	85-01-8	4	μg/kg	2150	213	17	296	8
Anthracene	120-12-7	4	μg/kg	380	85	6	136	<5
Fluoranthene	206-44-0	4	μg/kg	6170	456	47	839	15
Pyrene	129-00-0	4	μg/kg	4140	362	40	644	13
Benz(a)anthracene	56-55-3	4	μg/kg	1970	240	24	435	7
Chrysene	218-01-9	4	μg/kg	1630	189	20	286	8
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg	950	200	24	296	10
Benzo(k)fluoranthene	207-08-9	4	μg/kg	467	99	11	154	<5
Benzo(e)pyrene	192-97-2	4	μg/kg	421	109	14	162	6
Benzo(a)pyrene	50-32-8	4	μg/kg	527	218	21	329	7
Perylene	198-55-0	4	μg/kg	168	88	21	108	12
Benzo(g.h.i)perylene	191-24-2	4	μg/kg	147	115	14	167	7
Dibenz(a.h)anthracene	53-70-3	4	μg/kg	52	26	<5	39	<5
Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	172	107	13	159	6
Coronene	191-07-1	5	μg/kg	13	27	<5	41	<5
^ Sum of PAHs		4	μg/kg	19600	2620	295	4210	113
Radionuclides / Activity								
Gross alpha		500	Bq/kg DW	640	640	510	570	<500
Gross beta		500	Bq/kg DW	570	<500	560	530	530
EP080-SD: TPH(V)/BTEX Surrogates	s							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	84.5	81.4	66.6	76.9	56.4
Toluene-D8	2037-26-5	0.2	%	70.9	64.8	55.6	61.6	54.8
4-Bromofluorobenzene	460-00-4	0.2	%	87.6	86.2	72.5	83.9	70.3
EP090S: Organotin Surrogate						<u> </u>		
Tripropyltin		0.5	%	84.0	87.0	72.6	92.3	35.6
EP131S: OC Pesticide Surrogate								
Dibromo-DDE	21655-73-2	0.50	%	73.7	45.4	58.7	61.7	64.1
EP132T: Base/Neutral Extractable S			, ,					
2-Fluorobiphenyl	321-60-8	10	%	98.6	96.1	89.3	84.1	84.4
2-i iuoropipiienyi	321-00-8	10	/0	30.0	30.1	09.3	U4. I	04.4

20 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_02	TB_05 (T1)	TB_05 (T2)	TB_05 (T3)	TB_12
	Cli	ent sampli	ng date / time	25-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-023	EB1823470-024	EB1823470-025	EB1823470-026	EB1823470-027
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extra	ctable Surrogates - Continued							
Anthracene-d10	1719-06-8	10	%	86.2	83.4	112	100	82.6
4-Terphenyl-d14	1718-51-0	10	%	82.0	89.8	92.2	84.1	85.4

21 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_18	TB_26	TB_29	D5	REF_01
	Cli	ient sampli	ng date / time	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	27-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1823470-028	EB1823470-029	EB1823470-030	EB1823470-031	EB1823470-033
•				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105-	-110°C)							
Moisture Content		0.1	%	62.4	65.7	65.8	66.2	17.7
EA150: Particle Sizing								
+75µm		1	%	8		2	2	98
+150µm		1	%	3		<1	<1	97
+300µm		1	%	1		<1	<1	92
+425µm		1	%	<1		<1	<1	84
+600µm		1	%	<1		<1	<1	71
+1180µm		1	%	<1		<1	<1	42
+2.36mm		1	%	<1		<1	<1	26
+4.75mm		1	%	<1		<1	<1	12
+9.5mm		1	%	<1		<1	<1	9
+19.0mm		1	%	<1		<1	<1	<1
+37.5mm		1	%	<1		<1	<1	<1
+75.0mm		1	%	<1		<1	<1	<1
EA150: Soil Classification based on Pa	rticle Size							
Clay (<2 µm)		1	%	34		36	38	<1
Silt (2-60 µm)		1	%	53		53	54	1
Sand (0.06-2.00 mm)		1	%	13		11	8	68
Gravel (>2mm)		1	%	<1		<1	<1	31
Cobbles (>6cm)		1	%	<1		<1	<1	<1
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.07		1.07	1.08	1.93
Ø Underflow Solids		0.1	%	35.4		32.8	35.0	74.0
ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.800		0.267	2.60	56.6
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.150		0.075	0.200	56.6
Ø Clarity		-	-	Clear		Clear	Clear	Clear
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.15		1.11	1.10	1.96
ø Underflow Solids		0.1	%	21.3		19.6	26.7	72.7
ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.017		0.010	0.050	24.4
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.006		0.010	0.014	24.4
ø Clarity		-	-	Clear		Clear	Clear	Clear
EA152: Soil Particle Density								
Ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.55				2.61

22 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_18	TB_26	TB_29	D5	REF_01
	CI	ient sampli	ng date / time	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	27-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1823470-028	EB1823470-029	EB1823470-030	EB1823470-031	EB1823470-033
•			ŀ	Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	7.24	7.83	8.01	8.05	18.4
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	22.6	23.2	25.9	25.8	4.0
Copper	7440-50-8	1.0	mg/kg	23.4	19.5	23.4	24.1	3.6
Lead	7439-92-1	1.0	mg/kg	14.4	14.0	15.6	15.8	11.4
Nickel	7440-02-0	1.0	mg/kg	13.2	13.6	14.7	14.7	3.2
Zinc	7440-66-6	1.0	mg/kg	51.9	49.9	54.5	56.1	7.0
EG035T: Total Recoverable Mercury b	y FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.03	0.03	0.03	0.03	<0.01
EP003: Total Organic Carbon (TOC) in	Soil							
Total Organic Carbon		0.02	%	1.15	1.05	0.92	0.90	0.23
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ns					
>C10 - C16 Fraction		3	mg/kg	4	6	6	6	<3
>C16 - C34 Fraction		3	mg/kg	26	40	33	47	10
>C34 - C40 Fraction		5	mg/kg	12	17	15	14	<5
>C10 - C40 Fraction (sum)		3	mg/kg	42	63	54	67	10
>C10 - C16 Fraction minus Naphthalene		3	mg/kg	4	6	6	6	<3
(F2)								
EP080-SD / EP071-SD: Total Petroleun	n Hydrocarbons							
C6 - C9 Fraction		3	mg/kg	<3	<3	<3	<3	<3
C10 - C14 Fraction		3	mg/kg	4	6	6	5	<3
C15 - C28 Fraction		3	mg/kg	18	28	23	35	7
C29 - C36 Fraction		5	mg/kg	14	23	18	19	<5
^ C10 - C36 Fraction (sum)		3	mg/kg	36	57	47	59	7
EP080-SD / EP071-SD: Total Recovera	ble Hydrocarbons							
C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	<3	<3	<3
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	3.0	mg/kg	<3.0	<3.0	<3.0	<3.0	<3.0
(F1)								
EP080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.2
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2

23 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_18	TB_26	TB_29	D5	REF_01
(Mathix COIL)	Cli	ent sampli	ing date / time	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	27-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1823470-028	EB1823470-029	EB1823470-030	EB1823470-031	EB1823470-033
			-	Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	1	<1	<1	1	<1
Tributyltin	56573-85-4	0.5	μgSn/kg	3.3	1.1	2.3	2.1	<0.5
EP131A: Organochlorine Pesticides								
Aldrin	309-00-2	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
alpha-BHC	319-84-6	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
beta-BHC	319-85-7	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
delta-BHC	319-86-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
4.4`-DDD	72-54-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
4.4`-DDE	72-55-9	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
4.4`-DDT	50-29-3	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
	0-2		15 5					
Dieldrin	60-57-1	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
alpha-Endosulfan	959-98-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
beta-Endosulfan	33213-65-9	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
Endosulfan sulfate	1031-07-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
^ Endosulfan (sum)	115-29-7	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
Endrin	72-20-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
Endrin aldehyde	7421-93-4	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
Endrin ketone	53494-70-5	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
Heptachlor	76-44-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
Heptachlor epoxide	1024-57-3	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
Hexachlorobenzene (HCB)	118-74-1	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
gamma-BHC	58-89-9	0.25	μg/kg	<0.25	<0.25	<0.25	<0.25	
Methoxychlor	72-43-5	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
cis-Chlordane	5103-71-9	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
trans-Chlordane	5103-74-2	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
^ Total Chlordane (sum)		0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
Oxychlordane	27304-13-8	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.50	μg/kg	<0.50	<0.50	<0.50	<0.50	

24 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_18	TB_26	TB_29	D5	REF_01
,	Cli	ient sampli	ing date / time	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	27-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1823470-028	EB1823470-029	EB1823470-030	EB1823470-031	EB1823470-033
•				Result	Result	Result	Result	Result
P131A: Organochlorine Pesticide	s - Continued							
P132B: Polynuclear Aromatic Hyd	drocarbons							
Naphthalene	91-20-3	5	μg/kg	13	13	12	17	<5
2-Methylnaphthalene	91-57-6	5	μg/kg	<5	<5	<5	<5	<5
Acenaphthylene	208-96-8	4	μg/kg	<5	<5	<5	<5	<4
Acenaphthene	83-32-9	4	μg/kg	<5	<5	<5	<5	<4
Fluorene	86-73-7	4	μg/kg	<5	<5	<5	<5	<4
Phenanthrene	85-01-8	4	μg/kg	20	10	9	11	<4
Anthracene	120-12-7	4	μg/kg	6	<5	<5	<5	<4
Fluoranthene	206-44-0	4	μg/kg	60	17	15	22	<4
Pyrene	129-00-0	4	μg/kg	52	14	13	19	<4
Benz(a)anthracene	56-55-3	4	μg/kg	30	8	8	12	<4
Chrysene	218-01-9	4	μg/kg	25	8	8	11	<4
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg	33	9	10	10	<4
Benzo(k)fluoranthene	207-08-9	4	μg/kg	13	<5	<5	5	<4
Benzo(e)pyrene	192-97-2	4	μg/kg	19	5	6	7	<4
Benzo(a)pyrene	50-32-8	4	μg/kg	28	7	7	9	<4
Perylene	198-55-0	4	μg/kg	21	12	12	14	<4
Benzo(g.h.i)perylene	191-24-2	4	μg/kg	22	7	7	7	<4
Dibenz(a.h)anthracene	53-70-3	4	μg/kg	6	<5	<5	<5	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	19	6	6	6	<4
Coronene	191-07-1	5	μg/kg	8	<5	<5	<5	<5
Sum of PAHs		4	μg/kg	375	116	113	150	<4
adionuclides / Activity								
Gross alpha		500	Bq/kg DW	<500	920	1100	670	
Gross beta		500	Bq/kg DW	<500	560	530	520	
P080-SD: TPH(V)/BTEX Surrogate	s							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	85.4	72.5	80.1	72.9	103
Toluene-D8	2037-26-5	0.2	%	72.9	56.1	62.3	57.3	78.6
4-Bromofluorobenzene	460-00-4	0.2	%	93.4	71.9	81.0	75.6	100
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	68.8	84.6	78.1	89.6	95.5
P131S: OC Pesticide Surrogate								
Dibromo-DDE	21655-73-2	0.50	%	70.8	43.8	76.1	67.6	
P132T: Base/Neutral Extractable S	Surregetoe							

25 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_18	TB_26	TB_29	D5	REF_01
	Cli	ient sampli	ng date / time	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	27-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1823470-028	EB1823470-029	EB1823470-030	EB1823470-031	EB1823470-033
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extracta	able Surrogates - Continued							
2-Fluorobiphenyl	321-60-8	10	%	85.8	91.8	87.7	81.0	77.2
Anthracene-d10	1719-06-8	10	%	86.2	87.3	84.4	103	104
4-Terphenyl-d14	1718-51-0	10	%	88.4	85.4	84.2	80.3	84.5

26 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	REF_02	REF_03	SG_01	SG_02	SG_03
	Cli	ient sampli	ing date / time	27-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-034	EB1823470-035	EB1823470-036	EB1823470-037	EB1823470-038
•				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105-	-110°C)							
Moisture Content		0.1	%	17.8	17.2	22.0	19.3	16.2
EA150: Particle Sizing								
+75µm		1	%	97		97	98	98
+150µm		1	%	95		96	97	97
+300µm		1	%	90		92	92	90
+425µm		1	%	85		88	86	81
+600µm		1	%	72		84	78	71
+1180µm		1	%	30		74	58	49
+2.36mm		1	%	8		64	26	26
+4.75mm		1	%	2		57	5	17
+9.5mm		1	%	<1		52	<1	13
+19.0mm		1	%	<1		33	<1	13
+37.5mm		1	%	<1		<1	<1	<1
+75.0mm		1	%	<1		<1	<1	<1
EA150: Soil Classification based on Pa	rticle Size							
Clay (<2 µm)		1	%	1		1	<1	<1
Silt (2-60 µm)		1	%	1		2	1	1
Sand (0.06-2.00 mm)		1	%	83		30	63	66
Gravel (>2mm)		1	%	15		67	36	33
Cobbles (>6cm)		1	%	<1		<1	<1	<1
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.99		1.83	1.74	1.79
Ø Underflow Solids		0.1	%	71.7		68.3	71.8	69.9
ø Settling Rate @ 50% of Settlement		0.001	mm/min	58.4		55.6	57.0	58.0
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	58.4		55.6	57.0	58.0
Ø Clarity		-	-	Clear		Clear	Clear	Clear
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.99		2.10	2.06	1.78
ø Underflow Solids		0.1	%	71.7		68.1	69.5	70.3
ø Settling Rate @ 50% of Settlement		0.001	mm/min	24.8		24.6	24.2	24.6
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	24.8		24.6	24.2	24.6
ø Clarity		-	-	Clear		Clear	Clear	Clear
EA152: Soil Particle Density								
Ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	3.08			2.49	2.41

27 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	REF_02	REF_03	SG_01	SG_02	SG_03
	Cli	ent sampli	ng date / time	27-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-034	EB1823470-035	EB1823470-036	EB1823470-037	EB1823470-038
				Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sediments	by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	9.70	9.88	5.62	6.69	8.64
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	3.7	3.1	4.0	2.2	2.6
Copper	7440-50-8	1.0	mg/kg	1.2	1.2	1.6	1.2	1.5
Lead	7439-92-1	1.0	mg/kg	3.1	2.4	2.7	2.2	2.4
Nickel	7440-02-0	1.0	mg/kg	1.7	1.5	2.0	1.4	1.7
Zinc	7440-66-6	1.0	mg/kg	4.0	4.3	5.3	3.4	6.2
EG035T: Total Recoverable Mercury b	y FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01
EP003: Total Organic Carbon (TOC) in	Soil							
Total Organic Carbon		0.02	%	0.25	0.20	0.24	0.20	0.19
EP080/071: Total Recoverable Hydroc	arbons - NEDM 201		ne					
>C10 - C16 Fraction	arbons - NEF W 201	3	mg/kg	<3	<3	<3	<3	<3
>C16 - C34 Fraction		3	mg/kg	13	7	12	5	6
>C34 - C40 Fraction		5	mg/kg	6	<5	<5	<5	<5
>C10 - C40 Fraction (sum)		3	mg/kg	19	7	12	5	6
>C10 - C16 Fraction minus Naphthalene		3	mg/kg	<3	<3	<3	<3	<3
(F2)								
EP080-SD / EP071-SD: Total Petroleun	n Hydrocarbons							
C6 - C9 Fraction		3	mg/kg	<3	<3	<3	<3	<3
C10 - C14 Fraction		3	mg/kg	<3	<3	<3	<3	<3
C15 - C28 Fraction		3	mg/kg	9	4	7	<3	4
C29 - C36 Fraction		5	mg/kg	7	<5	7	<5	<5
^ C10 - C36 Fraction (sum)		3	mg/kg	16	4	14	<3	4
EP080-SD / EP071-SD: Total Recovera	hle Hydrocarbons							
C6 - C10 Fraction	C6 C10	3	mg/kg	<3	<3	<3	<3	<3
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	3.0	mg/kg	<3.0	<3.0	<3.0	<3.0	<3.0
(F1)	00_0.0 B1EX							
EP080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2

28 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	REF_02	REF_03	SG_01	SG_02	SG_03
	Cli	ent sampli	ing date / time	27-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-034	EB1823470-035	EB1823470-036	EB1823470-037	EB1823470-038
•				Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	<1	<1	<1
Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP132B: Polynuclear Aromatic Hy	vdrocarbons							
Naphthalene	91-20-3	5	μg/kg	<5	<5	<5	<5	<5
2-Methylnaphthalene	91-57-6	5	μg/kg	<5	<5	<5	<5	<5
Acenaphthylene	208-96-8	4	μg/kg	<4	<4	<4	<4	<4
Acenaphthene	83-32-9	4	μg/kg	<4	<4	<4	<4	<4
Fluorene	86-73-7	4	μg/kg	<4	<4	<4	<4	<4
Phenanthrene	85-01-8	4	μg/kg	<4	<4	<4	<4	<4
Anthracene	120-12-7	4	μg/kg	<4	<4	<4	<4	<4
Fluoranthene	206-44-0	4	μg/kg	<4	<4	<4	<4	<4
Pyrene	129-00-0	4	μg/kg	<4	<4	<4	<4	<4
Benz(a)anthracene	56-55-3	4	μg/kg	<4	<4	<4	<4	<4
Chrysene	218-01-9	4	μg/kg	<4	<4	<4	<4	<4
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg	<4	<4	<4	<4	<4
Benzo(k)fluoranthene	207-08-9	4	μg/kg	<4	<4	<4	<4	<4
Benzo(e)pyrene	192-97-2	4	μg/kg	<4	<4	<4	<4	<4
Benzo(a)pyrene	50-32-8	4	μg/kg	<4	<4	<4	<4	<4
Perylene	198-55-0	4	μg/kg	<4	<4	<4	<4	<4
Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<4	<4	<4	<4	<4
Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	<4	<4	<4	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<4	<4	<4	<4	<4
Coronene	191-07-1	5	μg/kg	<5	<5	<5	<5	<5
Sum of PAHs		4	μg/kg	<4	<4	<4	<4	<4
EP080-SD: TPH(V)/BTEX Surrogat	es							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	101	89.3	92.7	91.8	91.3
Toluene-D8	2037-26-5	0.2	%	83.8	91.4	91.4	91.6	87.6
4-Bromofluorobenzene	460-00-4	0.2	%	102	93.4	94.5	92.6	92.9

29 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	REF_02	REF_03	SG_01	SG_02	SG_03
	CI	ient sampli	ing date / time	27-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823470-034	EB1823470-035	EB1823470-036	EB1823470-037	EB1823470-038
				Result	Result	Result	Result	Result
EP090S: Organotin Surrogate -	Continued							
Tripropyltin		0.5	%	149	94.4	89.4	86.3	153
EP132T: Base/Neutral Extractal	ole Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	83.6	83.2	83.8	73.4	95.7
Anthracene-d10	1719-06-8	10	%	103	112	105	94.9	80.6
4-Terphenyl-d14	1718-51-0	10	%	82.7	88.2	83.3	85.6	72.3

30 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

•						
Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	H-3	 	
	C	ient sampli	ing date / time	25-Sep-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EB1823470-039	 	
				Result	 	
EA055: Moisture Content (Dried @	ฏ 105-110°C)					
Moisture Content		0.1	%	52.3	 	
EG020-SD: Total Metals in Sedime	ents by ICPMS					
Arsenic	7440-38-2	1.00	mg/kg	7.30	 	
Cadmium	7440-43-9	0.1	mg/kg	<0.1	 	
Chromium	7440-47-3	1.0	mg/kg	16.0	 	
Copper	7440-50-8	1.0	mg/kg	140	 	
Lead	7439-92-1	1.0	mg/kg	27.7	 	
Nickel	7440-02-0	1.0	mg/kg	8.4	 	
Zinc	7440-66-6	1.0	mg/kg	165	 	
EG035T: Total Recoverable Merc	ury by FIMS					
Mercury	7439-97-6	0.01	mg/kg	0.03	 	
EP003: Total Organic Carbon (TO	C) in Soil					
Total Organic Carbon		0.02	%	0.77	 	
EP090: Organotin Compounds						
Monobutyltin	78763-54-9	1	μgSn/kg	18	 	
Dibutyltin	1002-53-5	1	μgSn/kg	50	 	
Tributyltin	56573-85-4	0.5	μgSn/kg	177	 	
EP090S: Organotin Surrogate						
Tripropyltin		0.5	%	115	 	

31 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	Rinsate 1	Rinsate 2	Rinsate 3	Rinsate 4	
	CI	ient sampli	ng date / time	24-Sep-2018 00:00	25-Sep-2018 00:00	26-Sep-2018 00:00	27-Sep-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1823470-048	EB1823470-049	EB1823470-050	EB1823470-051	
				Result	Result	Result	Result	
EG020T: Total Metals by ICP-N	IS							
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	
EG035T: Total Recoverable M	ercury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	

32 of 32 EB1823470 Amendment 3 Work Order : ADVISIAN PTY LTD Client

301001.02018 - Port of Mackay Sediment Sampling Project

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080-SD: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	145
Toluene-D8	2037-26-5	42	144
4-Bromofluorobenzene	460-00-4	58	142
EP090S: Organotin Surrogate			
Tripropyltin		35	130
EP131S: OC Pesticide Surrogate			
Dibromo-DDE	21655-73-2	10	119
EP132T: Base/Neutral Extractable Surrogates			
2-Fluorobiphenyl	321-60-8	55	135
Anthracene-d10	1719-06-8	70	136
4-Terphenyl-d14	1718-51-0	57	127

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

% Passing

100%

99%

98%

86%

83%

81%

78%

69% 64%

53%

44%

23%

Particle Size (mm)

0.300

0.150

0.075
Particle Size (microns)

50

35

25

18

13

10

7

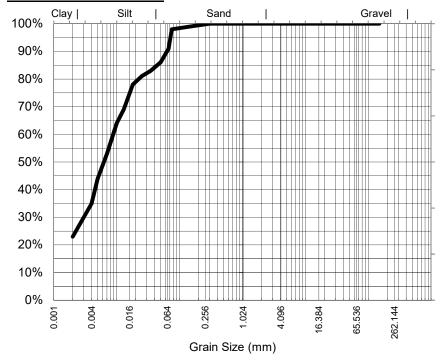
5

2

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED**: 27-Sep-2018

ADDRESS: LEVEL 3 REPORT NO: EB1823470-014 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: B1_02 (T2)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

	Me	dian Particle Size (mm)*	<0.007
--	----	--------------------------	--------

Sample Comments: 8-Oct-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

g/cm³

2.4 (2.45)*

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

^{*} Soil Particle Density results fell outside the scope of AS 1289.3.6.3. Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

% Passing

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED**: 27-Sep-2018

ADDRESS: LEVEL 3 REPORT NO: EB1823470-015 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID:

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

0.150	100%
0.075	98%
Particle Size (microns)	
46	85%
34	82%
24	80%
17	72%
12	67%
9	60%
7	49%
5	36%
1	19%

B1_02 (T3)

Particle Size (mm)

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Limit of Reporting: 1%

Dispersion Method Shaker

0.007

8-Oct-18

ASTM E100

Median Particle Size (mm)*

Analysed:

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.58 g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

NATA

WORLD SECCEMBED

ACCREDITATION

Hydrometer Type

Dianne Blane
Laboratory Coordinator
Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

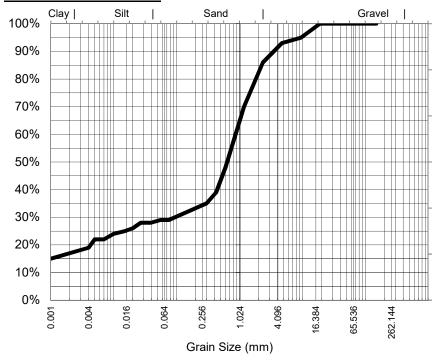
ALS Environmental Newcastle, NSW

% Passing

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED**: 27-Sep-2018

ADDRESS: LEVEL 3 REPORT NO: EB1823470-001 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID:

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

19.0	100%
9.50	95%
4.75	93%
2.36	86%
1.18	70%
0.600	48%
0.425	39%
0.300	35%
0.150	32%
0.075	29%
Particle Size (microns)	
55	29%
39	28%
27	28%
20	26%
15	25%
10	24%
7	22%
5	22%
1	15%

SB_02 (T1)

Particle Size (mm)

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Limit of Reporting: 1%

Dispersion Method Shaker

0.653

8-Oct-18

ASTM E100

Median Particle Size (mm)*

Analysed:

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND, STONE

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.54 g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hydrometer Type

Dianne Blane
Laboratory Coordinator
Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

% Passing

100%

93% 92%

88%

77%

62%

55%

51%

47%

44%

42%

41%

40%

39%

36%

35%

34%

32%

13%

SB_02 (T2)

Particle Size (mm)

19.0

9.50

4.75

2.36

1.18

0.600

0.425

0.300

0.150

0.075

Particle Size (microns)

53

38

27

20

14

10

7

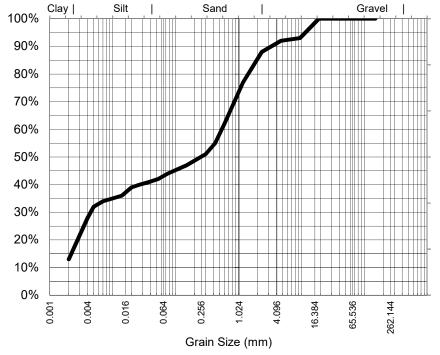
5

2

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-002 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay

Sediment Sampling

Particle Size Distribution

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Analysis Notes

Samples analysed as received.

Median Particle Size (mm)*	0.263

Sample Comments: Analysed: 8-Oct-18

Loss on Pretreatment NA **Limit of Reporting: 1%**

Sample Description: Dispersion Method Shaker FINES, SAND, STONE

AS1289.3.6.2/AS1289.3.6.3 ASTM E100 **Test Method: Hydrometer Type**

g/cm³

Soil Particle Density (<2.36mm)

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.49

Dianne Blane Laboratory Coordinator Authorised Signatory

Page 1 of 1 Template Version PKV8.0 180917

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

% Passing

100% 99%

> 97% 88%

74%

67%

64%

61%

58%

57%

54%

53%

51%

48% 45%

44%

40%

28%

8-Oct-18

ASTM E100

SB_02 (T3)

Particle Size (mm)

9.50

4.75

2.36

1.18

0.600

0.425

0.300

0.150

0.075

Particle Size (microns)

51

36

25

19

14

10

7

5

Analysed:

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED**: 27-Sep-2018

ADDRESS: LEVEL 3 REPORT NO: EB1823470-003 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID:

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Sample Comments:

Me	edian Particle Size (mm)*	0.017

Limit of Reporting: 1%

Dispersion Method Shaker

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Loss on Pretreatment NA

Sample Description: FINES, SAND, STONE

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.48 g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hydrometer Type

Dianne Blane
Laboratory Coordinator
Authorised Signatory

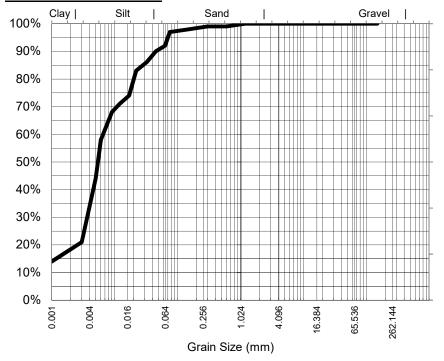
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-004 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay SB_16

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
1.18	100%
0.600	99%
0.425	99%
0.300	99%
0.150	98%
0.075	97%
Particle Size (microns)	
45	90%
32	86%
22	83%
17	74%
12	71%
9	68%
6	58%
5	44%
1	14%

<0.006

8-Oct-18

Median Particle Size (mm)*

Analysed:

Limit of Reporting: 1%

Dispersion Method Shaker

ASTM E100 **Hydrometer Type**

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm)

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator Authorised Signatory

Page 1 of 1 Template Version PKV8.0 180917

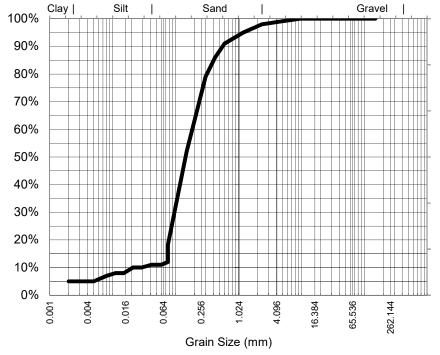
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED**: 27-Sep-2018

ADDRESS: LEVEL 3 REPORT NO: EB1823470-006 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: SB_45

Sediment Sampling

Particle Size Distribution

Analysis Note	s
----------------------	---

Samples analysed as received.

Particle Size (mm)	% Passing
9.50	100%
4.75	99%
2.36	98%
1.18	95%
0.600	91%
0.425	86%
0.300	79%
0.150	52%
0.075	18%
Particle Size (microns)	
59	11%
41	11%
29	10%
21	10%
15	8%
11	8%
8	7%
5	5%
2	5%

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

2.59

Median Particle Size (mm)*

Sample Comments: 8-Oct-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

g/cm³

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dolor

Dianne Blane
Laboratory Coordinator
Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-008 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
1.18	100%
0.600	99%
0.425	99%
0.300	98%
0.150	94%
0.075	86%
Particle Size (microns)	
45	74%
32	71%
24	63%
17	61%
12	59%
9	53%
6	48%
5	43%
1	29%

SB_52

Median Particle Size (mm)*

0.007

8-Oct-18 Analysed:

Limit of Reporting: 1%

Dispersion Method Shaker

ASTM E100 **Hydrometer Type**

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator Authorised Signatory

Page 1 of 1 Template Version PKV8.0 180917

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

% Passing

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED**: 27-Sep-2018

ADDRESS: LEVEL 3 REPORT NO: EB1823470-010 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: SB_79

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

2.36	100%
1.18	99%
0.600	98%
0.425	98%
0.300	97%
0.150	93%
0.075	82%
Particle Size (microns)	
47	76%
33	73%
24	67%
18	62%
13	60%
9	54%
7	52%
5	48%
1	32%

Particle Size (mm)

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

2.5

Median Particle Size (mm)*	<0.007

8-Oct-18

Sample Comments: Analysed:

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

<u>Sample Description:</u> FINES, SAND <u>Dispersion Method</u> Shaker

g/cm³

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm)

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dolar

Dianne Blane
Laboratory Coordinator
Authorised Signatory

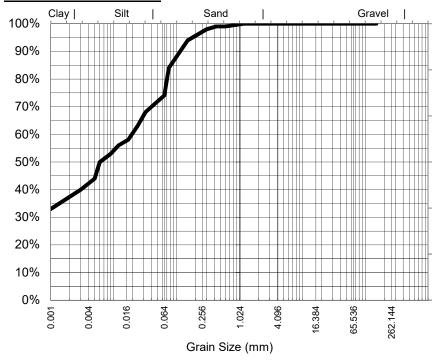
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-011 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
1.18	100%
0.600	99%
0.425	99%
0.300	98%
0.150	94%
0.075	84%
Particle Size (microns)	
45	71%
32	68%
24	63%
17	58%
12	56%
9	53%
6	50%
5	44%
1	33%

D1

Median Particle Size (mm)* 0.006

Analysed: 8-Oct-18

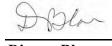
Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type ASTM E100

Sample Comments:

Loss on Pretreatment NA


Sample Description: FINES, SAND

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator Authorised Signatory

Page 1 of 1 Template Version PKV8.0 180917

^{*} Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

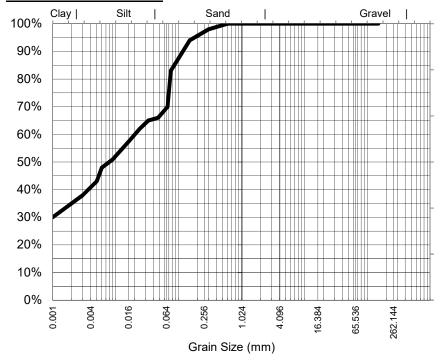
% Passing

0.008

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED**: 27-Sep-2018

ADDRESS: LEVEL 3 REPORT NO: EB1823470-012 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: D2

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

#N/A

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

0.600	100%
0.425	99%
0.300	98%
0.150	94%
0.075	83%
Particle Size (microns)	
47	66%
33	65%
24	62%
17	58%
13	55%
9	51%
6	48%
5	43%
1	30%

Particle Size (mm)

Sample Comments:	Analysed:	8-Oct-18
Sample Comments:	Analyseu:	0-00

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

g/cm³

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

7.6 1255.5.5.27 (6 1255.5.5.5)

Soil Particle Density (<2.36mm)

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dolar

Median Particle Size (mm)*

Dianne Blane
Laboratory Coordinator
Authorised Signatory

^{*} Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-013 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	98%
0.425	96%
0.300	93%
0.150	82%
0.075	72%
Particle Size (microns)	
47	61%
33	60%
24	56%
17	55%
13	51%
9	46%
6	42%
5	38%
1	24%

B1_02 (T1)

0.012

8-Oct-18 Analysed:

Limit of Reporting: 1%

Median Particle Size (mm)*

Dispersion Method Shaker

ASTM E100 **Hydrometer Type**

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) g/cm³

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Page 1 of 1 Template Version PKV8.0 180917

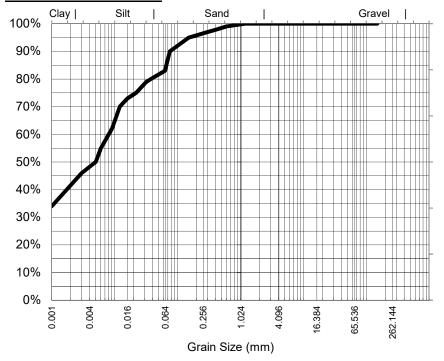
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED**: 27-Sep-2018

ADDRESS: LEVEL 3 REPORT NO: EB1823470-017 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID:

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
1.18	100%
0.600	99%
0.425	98%
0.300	97%
0.150	95%
0.075	90%
Particle Size (microns)	
45	81%
32	79%
22	75%
16	73%
12	70%
9	62%
6	55%
5	50%
1	34%

B3_14

<0.006

Median Particle Size (mm)*

Analysed: 8-Oct-18

Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type ASTM E100

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm)

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator
Authorised Signatory

Template Version PKV8.0 180917 Page 1 of 1

^{*} Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client. Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

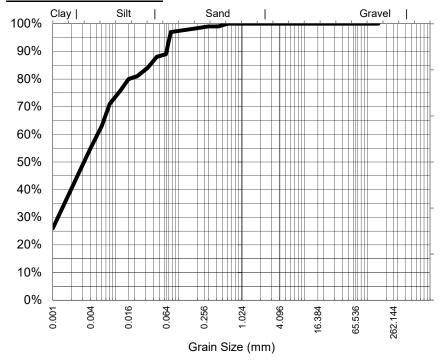
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-018 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay B4_01

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
0.600	100%
0.425	99%
0.300	99%
0.150	98%
0.075	97%
Particle Size (microns)	
45	88%
32	84%
22	81%
16	80%
12	76%
8	71%
6	63%
4	55%
1	26%

Median Farticle Size (IIIII)	Median Particle Size (mm)*	<0.006
------------------------------	----------------------------	--------

Analysed: 8-Oct-18

Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type ASTM E100

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm)

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Authorised Signatory

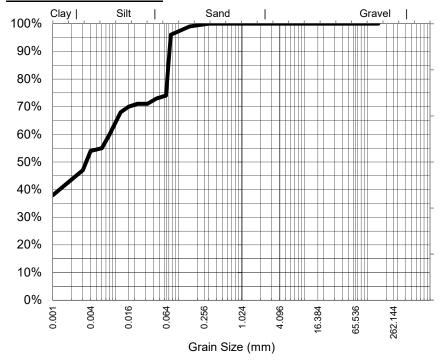
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-020 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay B5_10

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
0.300	100%
0.150	99%
0.075	96%
Particle Size (microns)	
45	73%
32	71%
22	71%
16	70%
12	68%
8	60%
6	55%
4	54%
1	38%

Median Particle Size (mm)*	<0.006

8-Oct-18 Analysed:

Limit of Reporting: 1%

Dispersion Method Shaker

ASTM E100 **Hydrometer Type**

Loss on Pretreatment

Sample Comments:

NA

Sample Description: FINES, SAND

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm)

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Authorised Signatory

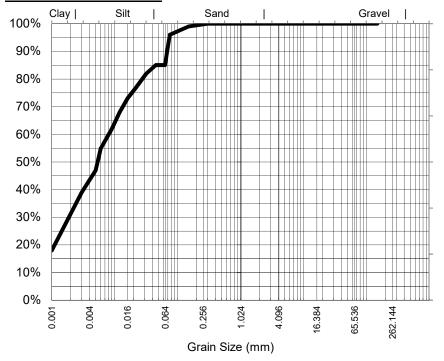
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-021 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: D3 301001.02018 - Port Of Mackay

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Soil Particle Density (<2.36mm)

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
0.300	100%
0.150	99%
0.075	96%
Particle Size (microns)	
45	85%
32	82%
22	77%
16	73%
12	68%
9	62%
6	55%
5	47%
1	18%

Median Particle Size (mm)*	<0.006

Sample Comments: 8-Oct-18 Analysed:

Loss on Pretreatment NA **Limit of Reporting: 1%**

Sample Description: Dispersion Method Shaker FINES, SAND

AS1289.3.6.2/AS1289.3.6.3 **Hydrometer Type** ASTM E100 **Test Method:**

g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator Authorised Signatory

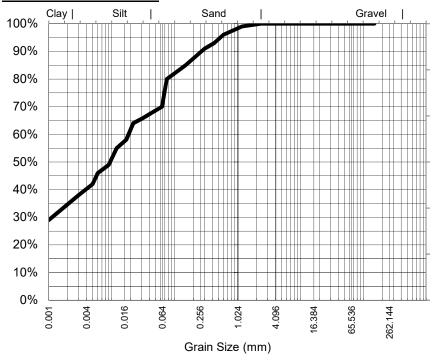
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-023 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay TB_02

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

	T
Particle Size (mm)	% Passing
2.36	100%
1.18	99%
0.600	96%
0.425	93%
0.300	91%
0.150	85%
0.075	80%
Particle Size (microns)	
45	68%
32	66%
22	64%
17	58%
12	55%
9	49%
6	46%
5	42%
1	29%

Median Particle Size (mm)*	0.010
----------------------------	-------

Analysed: 8-Oct-18

Limit of Reporting: 1%

Dispersion Method Shaker

ASTM E100 **Hydrometer Type**

Sample Comments:

Loss on Pretreatment NA

Sample Description: FINES, SAND

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Authorised Signatory

^{*} Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

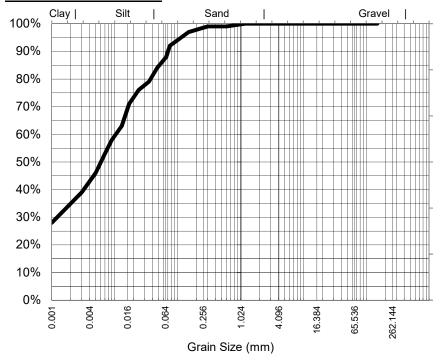
ALS Environmental Newcastle, NSW

% Passing

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-028 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay TB_18

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

1.18	100%
0.600	99%
0.425	99%
0.300	99%
0.150	97%
0.075	92%
Particle Size (microns)	
47	84%
35	79%
24	76%
17	71%
13	63%
9	58%
7	53%
5	46%
1	28%

Particle Size (mm)

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

2.55

8-Oct-18

Median Particle Size (mm)*

Analysed:

Sample Comments:

Loss on Pretreatment NA **Limit of Reporting: 1%**

Sample Description: Dispersion Method Shaker FINES, SAND

g/cm³

AS1289.3.6.2/AS1289.3.6.3 ASTM E100 **Test Method: Hydrometer Type**

Soil Particle Density (<2.36mm)

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator Authorised Signatory

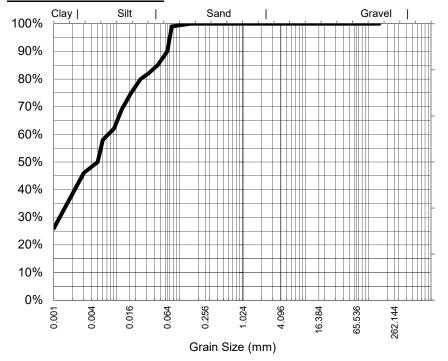
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED**: 27-Sep-2018

ADDRESS: LEVEL 3 REPORT NO: EB1823470-030 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: TB_29

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
0.150	100%
0.075	99%
Particle Size (microns)	
45	85%
32	82%
24	80%
17	75%
12	69%
9	62%
6	58%
5	50%
1	26%

< 0.006

Median Particle Size (mm)*

Sample Comments: 8-Oct-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3 Hydrometer Type ASTM E100

Soil Particle Density (<2.36mm) g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator
Authorised Signatory

Template Version PKV8.0 180917 Page 1 of 1

^{*} Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client. Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

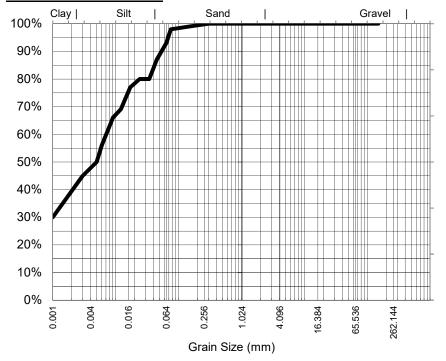
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-031 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: D5 301001.02018 - Port Of Mackay

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Particle Size (mm)	% Passing
0.300	100%
0.150	99%
0.075	98%
Particle Size (microns)	
45	87%
34	80%
24	80%
17	77%
12	69%
9	66%
6	56%
5	50%
1	30%

Median Particle Size (mm)*	<0.006

Analysed: 8-Oct-18

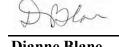
Limit of Reporting: 1%

Dispersion Method Shaker

ASTM E100 **Hydrometer Type**

Sample Comments:

Loss on Pretreatment NA


Sample Description: FINES, SAND

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) g/cm³

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

1.020

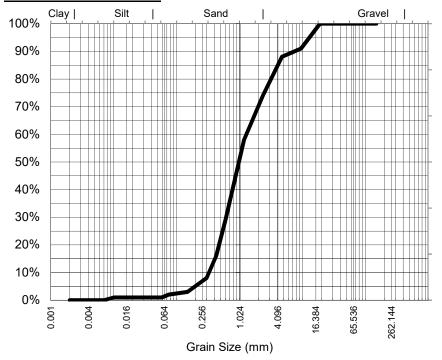
8-Oct-18

ASTM E100

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-033 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay

Sediment Sampling

Particle Size Distribution

Analysis N	lotes
------------	-------

Samples analysed as received.

Particle Size (mm)	% Passing
19.0	100%
9.50	91%
4.75	88%
2.36	74%
1.18	58%
0.600	29%
0.425	16%
0.300	8%
0.150	3%
0.075	2%
Particle Size (microns)	
58	1%
41	1%
29	1%
20	1%
15	1%
10	1%
7	0%

REF_01

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.3 states that hydrometer analysis is not applicable for **Sample Comments:**

samples containing <10% fines (<75um). Results should be

assessed accordingly

Loss on Pretreatment NA

Sample Description: SAND, STONE, SHELL

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) g/cm³ 2.61

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hydrometer Type

Median Particle Size (mm)*

Limit of Reporting: 1%

Dispersion Method Shaker

Analysed:

Dianne Blane Laboratory Coordinator Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

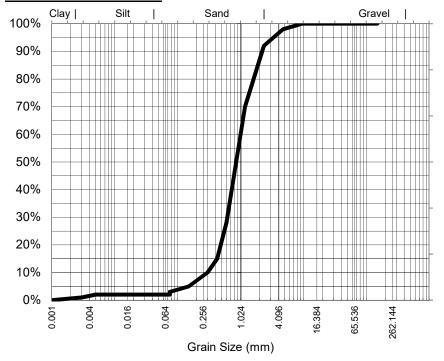
ALS Environmental Newcastle, NSW

% Passing

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

DATE RECEIVED: 27-Sep-2018 ADVISIAN PTY LTD **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-034 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

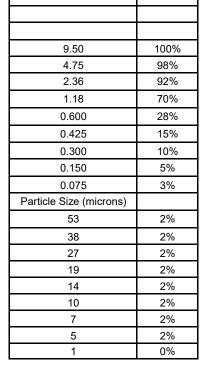
Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.3 states that hydrometer analysis is not applicable for **Sample Comments:**

samples containing <10% fines (<75um). Results should be

assessed accordingly

Loss on Pretreatment NA


Sample Description: SAND, STONE, SHELL

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) 3.08 (2.85)* g/cm3

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

REF_02

Particle Size (mm)

Median Particle Size (mm)* 0.904

Analysed: 8-Oct-18

Limit of Reporting: 1%

Dispersion Method Shaker

ASTM E100 **Hydrometer Type**

Dianne Blane Laboratory Coordinator Authorised Signatory

^{*} Soil Particle Density results fell outside the scope of AS 1289.3.6.3. Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

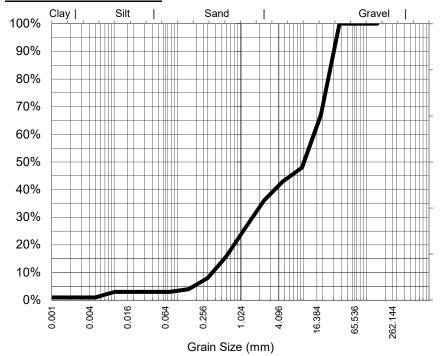
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-036 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay SG_01

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

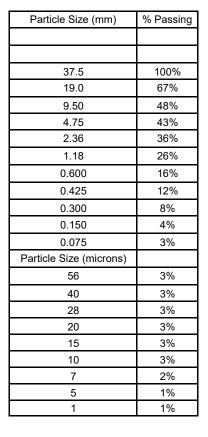
* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was unable to be performed as insufficient sample was supplied by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.3 states that hydrometer analysis is not applicable for **Sample Comments:** samples containing <10% fines (<75um). Results should be

assessed accordingly

Loss on Pretreatment NA


Sample Description: SAND, STONE, SHELL

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) g/cm³

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

10.500 Median Particle Size (mm)*

Analysed: 8-Oct-18

Limit of Reporting: 1%

Dispersion Method Shaker

ASTM E100 **Hydrometer Type**

Dianne Blane

Laboratory Coordinator Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

1.475

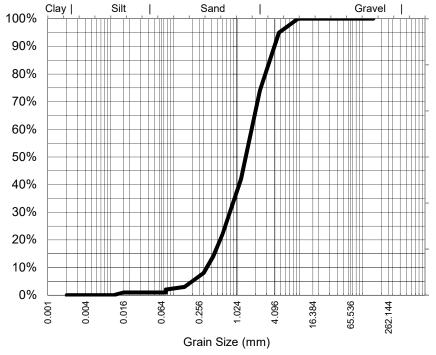
8-Oct-18

ASTM E100

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

ADVISIAN PTY LTD DATE RECEIVED: 27-Sep-2018 **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-037 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay SG 02

Sediment Sampling

Particle Size Distribution

Analysis Note	s
----------------------	---

Samples analysed as received.

Particle Size (mm)	% Passing
9.50	100%
4.75	95%
2.36	74%
1.18	42%
0.600	22%
0.425	14%
0.300	8%
0.150	3%
0.075	2%
Particle Size (microns)	
60	1%
43	1%
30	1%
21	1%
16	1%
11	0%
_	

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.3 states that hydrometer analysis is not applicable for **Sample Comments:**

samples containing <10% fines (<75um). Results should be

assessed accordingly

Loss on Pretreatment NA

Sample Description: SAND, STONE, SHELL

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) g/cm³ 2.49

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Hydrometer Type

Median Particle Size (mm)*

Limit of Reporting: 1%

Dispersion Method Shaker

Analysed:

Dianne Blane Laboratory Coordinator Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

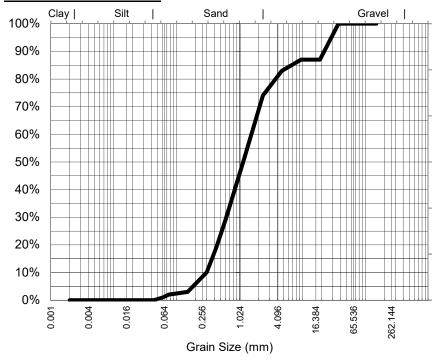
ALS Environmental Newcastle, NSW

% Passing

CLIENT: Bill Boylson DATE REPORTED: 24-Oct-2018

DATE RECEIVED: 27-Sep-2018 ADVISIAN PTY LTD **COMPANY:**

ADDRESS: LEVEL 3 **REPORT NO:** EB1823470-038 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay SG_03

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

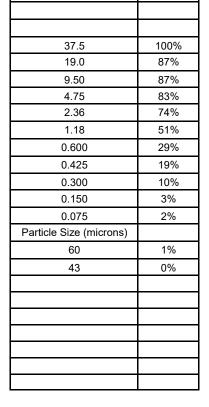
* Soil Particle Density results fell outside the scope of AS 1289.3.6.3. Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.3 states that hydrometer analysis is not applicable for **Sample Comments:** samples containing <10% fines (<75um). Results should be

assessed accordingly

Loss on Pretreatment NA


Sample Description: SAND, STONE, SHELL

AS1289.3.6.2/AS1289.3.6.3 **Test Method:**

Soil Particle Density (<2.36mm) 2.41 (2.45)* g/cm3

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)

Analysed: 8-Oct-18

1.154

Limit of Reporting: 1%

Median Particle Size (mm)*

Dispersion Method Shaker

ASTM E100 **Hydrometer Type**

Dianne Blane Laboratory Coordinator Authorised Signatory

CERTIFICATE OF ANALYSIS

: PR18A9577 Issue Date : 06-Nov-2018 **Work Order**

Customer : ALS ENVIRONMENTAL Laboratory : ALS Czech Republic, s.r.o.

Contact : results address Contact : Client Service

Address Address : Na Harfe 336/9 Prague 9 - Vysocany : 2 Byth Street

> 4051 Stafford QLD Australia Czech Republic 190 00

E-mail : subresults.bri@alsglobal.com E-mail : customer.support@alsglobal.com

Telephone Telephone : +420 226 226 228

Project : EB1823470 Page : 1 of 3 Order number

: 503857 : 25-Sep-2018 **Date Samples** Received

> Quote number : PR2015ALSEN-AU0002

(CZ-251-15-0965)

Date of test Site : 23-Oct-2018 - 05-Nov-2018 QC Level Sampled by : client

: ALS CR Standard Quality Control

Schedule

General Comments

This report shall not be reproduced except in full, without prior written approval from the laboratory. The laboratory declares that the test results relate only to the listed samples.

Responsible for accuracy

Signatories Zdeněk Jirák

Position Environmental Business Unit

Testing Laboratory No. 1163

Accredited by CAI according to CSN EN ISO/IEC 17025:2005

 Issue Date
 : 06-Nov-2018

 Page
 : 2 of 3

 Work Order
 : PR18A9577

Customer : ALS ENVIRONMENTAL

Analytical Results

Sub-Matrix: SOIL	Client sample ID		/D TB_02		TB_05 (T1)		TB_05 (T2)			
		Laboratory sample ID		PR18A957	7-001	PR18A9577-002		PR18A9577-003		
	Client sampling date / time			Client sampling date / time 22-Oct-2018 00:00		3 00:00	22-Oct-2018 00:00		22-Oct-2018 00:00	
Parameter	Method	LOR	Unit	Result	ми	Result	MU	Result	MU	
Physical Parameters										
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	96.6	± 6.0%	96.5	± 6.0%	97.0	± 6.0%	
Radiological Parameters										
Gross alpha activity	S-GAA-PRO	500	Bq/kg DW	640	± 54.4%	640	± 54.4%	510	± 66.8%	
Gross beta activity	S-GBA-PRO	500	Bq/kg DW	570	± 60.2%	<500		560	± 60.8%	

Sub-Matrix: SOIL	Client sample ID		TB_05 (T3)		TB_12		TB_18		
		Laboratory sample ID		PR18A957	PR18A9577-004		7-005	PR18A9577-006	
	Client sampling date / time		22-Oct-2018 00:00		22-Oct-2018 00:00		22-Oct-2018 00:00		
Parameter	Method	LOR	Unit	Result	ми	Result	ми	Result	MU
Physical Parameters									
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	97.2	± 6.0%	96.1	± 6.0%	96.6	± 6.0%
Radiological Parameters									
Gross alpha activity	S-GAA-PRO	500	Bq/kg DW	570	± 60.0%	<500		<500	
Gross beta activity	S-GBA-PRO	500	Bq/kg DW	530	± 64.2%	530	± 65.0%	<500	

Sub-Matrix: SOIL		Client sample ID Laboratory sample ID PR1		TB_2	TB_26		9	D5	
				PR18A9577-007		PR18A9577-008		PR18A9577-009	
	Client sampling date / time 22-Oct-2018 00:00		Client sampling date / time 22-Oct-2018 00:00 22-Oct-2018 00:00		3 00:00	22-Oct-2018 00:00			
Parameter	Method	LOR	Unit	Result	ми	Result	ми	Result	ми
Physical Parameters									
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	96.3	± 6.0%	96.5	± 6.0%	96.6	± 6.0%
Radiological Parameters									
Gross alpha activity	S-GAA-PRO	500	Bq/kg DW	920	± 39.3%	1100	± 33.7%	670	± 52.1%
Gross beta activity	S-GBA-PRO	500	Bq/kg DW	560	± 61.6%	530	± 65.0%	520	± 66.2%

Sub-Matrix: SOIL	Client sample ID		rix: SOIL Client sample ID D6						
	Laboratory sample ID			PR18A957	7-010				
	C	Client sampli	ing date / time	22-Oct-2018	3 00:00				
Parameter	Method	LOR	Unit	Result	ми	Result	MU	Result	MU
Physical Parameters									
Dry matter @ 105°C	S-DRY-GRCI	0.10	%	96.4	± 6.0%				
Radiological Parameters									
Gross alpha activity	S-GAA-PRO	500	Bq/kg DW	540	± 63.2%				
Gross beta activity	S-GBA-PRO	500	Bq/kg DW	540	± 63.4%				

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, delivery date in brackets without a time component will be displayed instead. Measurement uncertainty is expressed as expanded measurement uncertainty with coverage factor k = 2, representing 95% confidence level.

Key: LOR = Limit of reporting; MU = Measurement Uncertainty

The end of result part of the certificate of analysis

Brief Method Summaries

Analytical Methods	Method Descriptions							
Location of test performance: Bendlova 1687/7 Ceska Lipa Czech Republic 470 01								
S-DRY-GRCI	CZ_SOP_D06_01_045 (CSN ISO 11465, CSN EN 12880, CSN EN 14346), CZ_SOP_D06_07_046 (CSN ISO 11465, CSN EN							
	12880, CSN EN 14346, CSN 46 5735) Determination of dry matter by gravimetry and determination of moisture by calculation							
	from measured values.							
S-GAA-PRO	CZ_SOP_D06_07_368 (CSN 75 7611 and ISO 9696) Determination of gross alpha mass activity by direct measurement of the							
	sample by means of alpha radiation analyzer.							

Right Solutions • Right Partner www.alsglobal.eu

 Issue Date
 : 06-Nov-2018

 Page
 : 3 of 3

 Work Order
 : PR18A9577

Customer : ALS ENVIRONMENTAL

Analytical Methods	Method Descriptions
S-GBA-PRO	CZ_SOP_D06_07_369 (CSN 75 7612, CSN EN ISO 9697) Determination of gross beta mass activity by direct measurement of
	the sample by means of beta radiation analyzer.
Preparation Methods	Method Descriptions
Location of test performance	e: Bendlova 1687/7 Ceska Lipa Czech Republic 470 01
*S-PPHOM.07	CZ_SOP_D06_07_P01 Preparation of solid samples for analysis (crushing, milling and pulverizing).
*S-PPHOM0.3	CZ_SOP_D06_07_P01 Preparation of solid samples for analysis (crushing, milling and pulverizing).

A '*' symbol preceding any method indicates laboratory or subcontractor non-accredited test. In the case when a procedure belonging to an accredited method was used for non-accredited matrix, would apply that the reported results are non-accredited. Please refer to General Comment section on front page for information. If the report contains subcontracted analysis, those are made in a subcontracted laboratory outside the laboratories ALS Czech Republic, s.r.o.

The calculation methods of summation parameters are available on request in the client service.

Right Solutions • Right Partner www.alsglobal.eu

QUALITY CONTROL REPORT

Issue Date

: 11-Dec-2018

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : **EB1823470** Page : 1 of 23

Amendment : 3

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4000

Telephone : ---- Telephone : +61 7 3552 8662

Project : 301001.02018 - Port of Mackay Sediment Sampling Date Samples Received : 27-Sep-2018

Project : 301001.02018 - Port of Mackay Sediment Sampling Date Samples Received : 27-Sep-2018
Order number : Date Analysis Commenced : 04-Oct-2018

C-O-C number : ----

Sampler : NICHOLAS BAINTON

Site : ---

Quote number : BN/185/18

No. of samples received : 58
No. of samples analysed : 40

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Kim McCabe	Senior Inorganic Chemist	Brisbane External Subcontracting, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Matt Frost	Senior Organic Chemist	Brisbane Organics, Stafford, QLD
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Inorganics, Stafford, QLD

Page : 2 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG035T: Total Rec	overable Mercury by	FIMS (Low Level) (QC Lot: 1963208)							
EB1823470-013	B1_02 (T1)	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	0.02	0.02	0.00	0% - 20%
EB1823470-025	TB_05 (T2)	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	0.03	0.02	0.00	0% - 20%
EG035T: Total Rec	overable Mercury by	FIMS (Low Level) (QC Lot: 1963597)							
EB1823470-035	REF_03	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	0% - 20%
EG035T: Total Rec	overable Mercury by	FIMS (Low Level) (QC Lot: 1963602)							
EB1823470-001	SB_02 (T1)	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	0% - 20%
EB1823470-011	D1	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	0.02	0.02	0.00	0% - 20%
EG035T: Total Rec	overable Mercury by	FIMS (Low Level) (QC Lot: 2002069)							
EB1823470-014	B1_02 (T2)	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	0.03	0.02	0.00	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-1	10°C) (QC Lot: 1963219)							
EB1823470-013	B1_02 (T1)	EA055: Moisture Content		0.1	%	59.7	59.9	0.352	0% - 20%
EB1823470-025	TB_05 (T2)	EA055: Moisture Content		0.1	%	58.5	58.6	0.00	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-1	10°C) (QC Lot: 1963601)							
EB1823470-035	REF_03	EA055: Moisture Content		0.1	%	17.2	17.3	0.736	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-1	10°C) (QC Lot: 1963610)							
EB1823470-001	SB_02 (T1)	EA055: Moisture Content		0.1	%	34.2	34.1	0.382	0% - 20%
EB1823470-011	D1	EA055: Moisture Content		0.1	%	60.0	59.9	0.192	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-1	10°C) (QC Lot: 2002082)							
EB1823470-014	B1_02 (T2)	EA055: Moisture Content		0.1	%	69.2	68.7	0.726	0% - 20%
EG020-SD: Total Me	etals in Sediments by	ICPMS (QC Lot: 1963207)							
EB1823470-013	B1_02 (T1)	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	7.94	8.52	7.02	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	22.0	21.1	3.88	0% - 20%

Page : 3 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020-SD: Total M	etals in Sediments by IC	CPMS (QC Lot: 1963207) - continued							
EB1823470-013	B1_02 (T1)	EG020-SD: Copper	7440-50-8	1	mg/kg	30.1	33.6	11.1	0% - 20%
		EG020-SD: Lead	7439-92-1	1	mg/kg	10.9	11.3	3.53	0% - 50%
		EG020-SD: Nickel	7440-02-0	1	mg/kg	12.2	11.7	4.42	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	83.0	# 276	108	0% - 20%
EB1823470-025	TB_05 (T2)	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	7.56	7.28	3.84	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	20.2	19.1	5.76	0% - 20%
		EG020-SD: Copper	7440-50-8	1	mg/kg	20.8	20.3	2.84	0% - 20%
		EG020-SD: Lead	7439-92-1	1	mg/kg	12.7	13.3	5.03	0% - 50%
		EG020-SD: Nickel	7440-02-0	1	mg/kg	11.3	11.0	2.46	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	49.6	47.7	3.75	0% - 20%
EG020-SD: Total M	etals in Sediments by IC	CPMS (QC Lot: 1963596)							
EB1823470-035	REF_03	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	9.88	9.45	4.46	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	3.1	2.9	9.43	No Limit
		EG020-SD: Copper	7440-50-8	1	mg/kg	1.2	1.1	10.7	No Limit
		EG020-SD: Lead	7439-92-1	1	mg/kg	2.4	2.2	7.35	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	1.5	1.3	14.7	No Limit
		EG020-SD: Zinc	7440-66-6	1	mg/kg	4.3	4.3	0.00	No Limit
EG020-SD: Total M	etals in Sediments by IC	CPMS (QC Lot: 1963603)							
EB1823470-001	SB_02 (T1)	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
	_ ` ,	EG020-SD: Arsenic	7440-38-2	1	mg/kg	13.6	# 3.71	114	0% - 50%
		EG020-SD: Chromium	7440-47-3	1	mg/kg	8.4	7.6	9.59	No Limit
		EG020-SD: Copper	7440-50-8	1	mg/kg	9.0	5.9	42.2	No Limit
		EG020-SD: Lead	7439-92-1	1	mg/kg	6.6	5.2	24.0	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	8.0	4.6	53.0	No Limit
		EG020-SD: Zinc	7440-66-6	1	mg/kg	18.6	15.9	15.8	0% - 50%
EB1823470-011	D1	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	6.68	5.98	11.1	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	21.2	19.1	10.4	0% - 20%
		EG020-SD: Copper	7440-50-8	1	mg/kg	16.1	14.1	13.1	0% - 50%
		EG020-SD: Lead	7439-92-1	1	mg/kg	13.6	12.9	5.00	0% - 50%
		EG020-SD: Nickel	7440-02-0	1	mg/kg	12.2	11.2	8.04	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	41.8	39.2	6.37	0% - 20%
EG020-SD: Total M	etals in Sediments by IC	CPMS (QC Lot: 2002068)							
EB1823470-014	B1_02 (T2)	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
	_ ` ` '	EG020-SD: Arsenic	7440-38-2	1	mg/kg	9.70	9.38	3.42	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	32.2	30.6	5.35	0% - 20%
		EG020-SD: Copper	7440-50-8	1	mg/kg	18.5	17.7	4.42	0% - 50%
		EG020-SD: Lead	7439-92-1	1	mg/kg	15.2	14.5	4.82	0% - 50%

Page : 4 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020-SD: Total M	etals in Sediments by	ICPMS (QC Lot: 2002068) - continued							
EB1823470-014	B1_02 (T2)	EG020-SD: Nickel	7440-02-0	1	mg/kg	16.3	15.3	6.22	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	59.0	56.6	4.11	0% - 20%
EP003: Total Organ	ic Carbon (TOC) in So	oil (QC Lot: 1971923)							
EB1823470-001	SB_02 (T1)	EP003: Total Organic Carbon		0.02	%	0.54	0.53	2.16	0% - 20%
EB1823470-011	D1	EP003: Total Organic Carbon		0.02	%	0.93	0.85	8.31	0% - 20%
EP003: Total Organ	ic Carbon (TOC) in So	oil (QC Lot: 1971924)							
EB1823470-024	TB_05 (T1)	EP003: Total Organic Carbon		0.02	%	1.18	1.16	2.20	0% - 20%
EB1823470-035	REF_03	EP003: Total Organic Carbon		0.02	%	0.20	0.22	7.76	0% - 50%
EP003: Total Organ	ic Carbon (TOC) in So	oil (QC Lot: 2015080)							
EB1822885-021	Anonymous	EP003: Total Organic Carbon		0.02	%	2.22	2.15	3.32	0% - 20%
EB1824945-029	Anonymous	EP003: Total Organic Carbon		0.02	%	3.54	3.60	1.52	0% - 20%
EP080-SD / EP071-	SD: Total Petroleum H	lydrocarbons (QC Lot: 1963210)							
EB1823470-013	B1_02 (T1)	EP071-SD: C10 - C14 Fraction		3	mg/kg	6	7	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	22	28	23.0	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	44	58	27.4	0% - 50%
		EP071-SD: C29 - C36 Fraction		5	mg/kg	16	23	35.3	No Limit
EB1823470-024	TB_05 (T1)	EP071-SD: C10 - C14 Fraction		3	mg/kg	6	6	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	42	45	6.74	0% - 50%
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	89	95	6.52	0% - 20%
		EP071-SD: C29 - C36 Fraction		5	mg/kg	41	44	7.37	No Limit
EP080-SD / EP071-	SD: Total Petroleum H	lydrocarbons (QC Lot: 1963211)							
EB1823470-013	B1_02 (T1)	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	No Limit
EB1823470-024	TB_05 (T1)	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	No Limit
EP080-SD / EP071-	SD: Total Petroleum H	lydrocarbons (QC Lot: 1963598)							
EB1823470-035	REF_03	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	4	<3	28.9	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	4	<3	28.6	No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD / EP071-	SD: Total Petroleum H	lydrocarbons (QC Lot: 1963599)							
EB1823470-035	REF_03	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	No Limit
EP080-SD / EP071-	SD: Total Petroleum H	lydrocarbons (QC Lot: 2002072)							
EB1823470-014	B1_02 (T2)	EP071-SD: C10 - C14 Fraction		3	mg/kg	14	13	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	44	43	3.95	0% - 50%
		EP071-SD: C29 - C36 Fraction		5	mg/kg	50	36	33.1	0% - 50%
EP080-SD / EP071-	SD: Total Petroleum H	lydrocarbons (QC Lot: 2002073)							
EB1823470-014	B1_02 (T2)	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	No Limit
EP080-SD / EP071-	SD: Total Recoverable	Hydrocarbons (QC Lot: 1963210)							
EB1823470-013	B1_02 (T1)	EP071-SD: >C10 - C16 Fraction		3	mg/kg	6	7	18.6	No Limit

Page : 5 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t .	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080-SD / EP071-S	SD: Total Recoverable F	Hydrocarbons (QC Lot: 1963210) - continued							
EB1823470-013	B1_02 (T1)	EP071-SD: >C16 - C34 Fraction		3	mg/kg	31	41	26.5	0% - 50%
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	47	# 63	29.1	0% - 20%
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	10	15	33.2	No Limit
EB1823470-024	TB_05 (T1)	EP071-SD: >C10 - C16 Fraction		3	mg/kg	7	8	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	64	69	7.49	0% - 20%
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	101	110	8.53	0% - 20%
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	30	33	10.5	No Limit
EP080-SD / EP071-S	SD: Total Recoverable H	Hydrocarbons (QC Lot: 1963211)							
EB1823470-013	B1_02 (T1)	EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	0.00	No Limit
EB1823470-024	TB_05 (T1)	EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	0.00	No Limit
EP080-SD / EP071-S	SD: Total Recoverable F	lydrocarbons (QC Lot: 1963598)							
EB1823470-035	REF_03	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
	_	EP071-SD: >C16 - C34 Fraction		3	mg/kg	7	5	32.5	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	7	5	33.3	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD / EP071-S	SD: Total Recoverable H	Hydrocarbons (QC Lot: 1963599)							
EB1823470-035	REF 03	EP080-SD: C6 - C10 Fraction	C6 C10	3	mg/kg	<3	<3	0.00	No Limit
FP080-SD / FP071-S	SD: Total Recoverable F	Hydrocarbons (QC Lot: 2002072)	_						
EB1823470-014	B1_02 (T2)	EP071-SD: >C10 - C16 Fraction		3	mg/kg	14	14	0.00	No Limit
251020110 011	D1_02 (12)	EP071-SD: >C10 - C10 Fraction		3	mg/kg	69	59	15.6	0% - 20%
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	34	24	31.5	No Limit
ED090 SD / ED071 S	SD: Total Bacayarable b	Hydrocarbons (QC Lot: 2002073)			99			00	
EB1823470-014	B1 02 (T2)	EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	0.00	No Limit
	_ , ,	EP060-SD. C6 - C10 Flaction	00_010	<u> </u>	IIIg/kg	,5	,5	0.00	NO LITTIC
EP080-SD: BTEXN			74 40 0	0.0		-0.0	-0.0	0.00	No. 1 See 16
EB1823470-013	B1_02 (T1)	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.4	<0.4	0.00	No Limit
		EDOOO OD. arthur V. Laura	106-42-3 95-47-6	0.2	ma/ka	<0.2	<0.2	0.00	No Limit
		EP080-SD: ortho-Xylene	95-47-0	0.2	mg/kg mg/kg	<0.5	<0.5	0.00	No Limit
		EP080-SD: Total Xylenes	91-20-3	0.2	mg/kg	<0.2	<0.5	0.00	No Limit
EB1823470-024	TB 05 (T1)	EP080-SD: Naphthalene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
LD 102347 U-024	10_03 (11)	EP080-SD: Teluppe	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Toluene	100-68-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: moto & para Yulona	108-38-3	0.2	mg/kg	<0.4	<0.4	0.00	No Limit
		EP080-SD: meta- & para-Xylene	108-38-3 106-42-3	0.2	ilig/kg	~U.4	~U.4	0.00	INO LIIIIIL
		ED080 SD: ortho Yulono	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Total Videos	33-47-0	0.2	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080-SD: Total Xylenes		0.2	mg/kg	٠٠.٥	٧٠.٥	0.00	INO LIIIII

Page : 6 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	:	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080-SD: BTEXN	(QC Lot: 1963211) - c	ontinued							
EB1823470-024	TB_05 (T1)	EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP080-SD: BTEXN	(QC Lot: 1963599)								
EB1823470-035	REF_03	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
			106-42-3						
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Total Xylenes		0.2	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP080-SD: BTEXN	(QC Lot: 2002073)								
EB1823470-014	B1_02 (T2)	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.4	<0.4	0.00	No Limit
			106-42-3						
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Total Xylenes		0.2	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP090: Organotin (Compounds (QC Lot:	1963209)							
EB1823470-013	B1_02 (T1)	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	0.00	No Limit
		EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	0.00	No Limit
EB1823470-025	TB_05 (T2)	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	1.7	1.9	6.97	No Limit
		EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	1	0.00	No Limit
EP090: Organotin (Compounds (QC Lot:	1963600)							
EB1823470-035	REF_03	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	0.00	No Limit
		EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	0.00	No Limit
EP090: Organotin (Compounds (QC Lot:	1963604)							
EB1823470-001	SB_02 (T1)	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	0.00	No Limit
		EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	0.00	No Limit
EB1823470-011	D1	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	0.00	No Limit
		EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	0.00	No Limit
EP090: Organotin (Compounds (QC Lot:								
EB1823470-014	B1_02 (T2)	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	0.00	No Limit
	,	=. 300. Hibatyian			F 3 - 3	1			1 1

Page : 7 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP090: Organotin C	ompounds (QC Lot: 20	002075) - continued							
EB1823470-014	B1_02 (T2)	EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	0.00	No Limit
P131A: Organochl	orine Pesticides (QC L	.ot: 1964998)							
EB1823470-023	TB_02	EP131A: gamma-BHC	58-89-9	0.25	μg/kg	<0.25	<0.25	0.00	No Limit
		EP131A: cis-Chlordane	5103-71-9	0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: trans-Chlordane	5103-74-2	0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Total Chlordane (sum)		0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Aldrin	309-00-2	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: alpha-BHC	319-84-6	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: beta-BHC	319-85-7	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: delta-BHC	319-86-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDD	72-54-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDE	72-55-9	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDT	50-29-3	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Sum of DDD + DDE + DDT	72-54-8/72-55-	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
			9/50-2						
		EP131A: Dieldrin	60-57-1	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: alpha-Endosulfan	959-98-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: beta-Endosulfan	33213-65-9	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endosulfan sulfate	1031-07-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endosulfan (sum)	115-29-7	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endrin	72-20-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endrin aldehyde	7421-93-4	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endrin ketone	53494-70-5	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Heptachlor	76-44-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Heptachlor epoxide	1024-57-3	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Methoxychlor	72-43-5	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
B1823470-042	NA_03	EP131A: gamma-BHC	58-89-9	0.25	μg/kg	<0.25	<0.25	0.00	No Limit
		EP131A: cis-Chlordane	5103-71-9	0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: trans-Chlordane	5103-74-2	0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Total Chlordane (sum)		0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Aldrin	309-00-2	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: alpha-BHC	319-84-6	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: beta-BHC	319-85-7	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: delta-BHC	319-86-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDD	72-54-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDE	72-55-9	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDT	50-29-3	0.5	μg/kg	<0.50	<0.50	0.00	No Limit

Page : 8 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP131A: Organochl	orine Pesticides (QC L	ot: 1964998) - continued									
EB1823470-042	NA_03	EP131A: Sum of DDD + DDE + DDT	72-54-8/72-55-	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
			9/50-2								
		EP131A: Dieldrin	60-57-1	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: alpha-Endosulfan	959-98-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: beta-Endosulfan	33213-65-9	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: Endosulfan sulfate	1031-07-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: Endosulfan (sum)	115-29-7	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: Endrin	72-20-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: Endrin aldehyde	7421-93-4	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: Endrin ketone	53494-70-5	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: Heptachlor	76-44-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: Heptachlor epoxide	1024-57-3	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
		EP131A: Methoxychlor	72-43-5	0.5	μg/kg	<0.50	<0.50	0.00	No Limit		
EP132B: Polynuclea	ar Aromatic Hydrocarbo	ons (QC Lot: 1965783)									
EB1823470-013	B1_02 (T1)	EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	5	6	0.00	No Limit		
		EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	14	16	11.8	No Limit		
		EP132B-SD: Fluorene	86-73-7	4	μg/kg	12	15	18.6	No Limit		
		EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	99	# 171	53.6	0% - 20%		
		EP132B-SD: Anthracene	120-12-7	4	μg/kg	12	21	56.5	No Limit		
		EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	210	# 337	46.4	0% - 20%		
		EP132B-SD: Pyrene	129-00-0	4	μg/kg	159	# 258	47.8	0% - 20%		
		EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	82	# 132	46.5	0% - 20%		
		EP132B-SD: Chrysene	218-01-9	4	μg/kg	66	96	36.1	0% - 50%		
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	58	89	41.7	0% - 50%		
		, ,	205-82-3								
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	33	45	32.3	No Limit		
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	32	47	38.8	No Limit		
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	46	73	44.1	0% - 50%		
		EP132B-SD: Perylene	198-55-0	4	μg/kg	21	28	31.2	No Limit		
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	26	40	43.3	No Limit		
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	7	9	29.8	No Limit		
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	24	37	41.7	No Limit		
		EP132B-SD: Sum of PAHs		4	μg/kg	928	# 1470	45.3	0% - 20%		
		EP132B-SD: Naphthalene	91-20-3	5	μg/kg	16	34	69.5	No Limit		
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	8	43.2	No Limit		
		EP132B-SD: Coronene	191-07-1	5	μg/kg	6	10	48.2	No Limit		
EB1823470-026	TB_05 (T3)	EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	51	69	29.0	0% - 50%		
		EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	8	23	100	No Limit		
		EP132B-SD: Fluorene	86-73-7	4	μg/kg	25	# 81	105	0% - 50%		

Page : 9 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP132B: Polynucle	ar Aromatic Hydrocarbo	ons (QC Lot: 1965783) - continued							
EB1823470-026	TB_05 (T3)	EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	296	# 617	70.4	0% - 20%
		EP132B-SD: Anthracene	120-12-7	4	μg/kg	136	154	13.0	0% - 20%
		EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	839	807	3.91	0% - 20%
		EP132B-SD: Pyrene	129-00-0	4	μg/kg	644	742	14.2	0% - 20%
		EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	435	410	6.13	0% - 20%
		EP132B-SD: Chrysene	218-01-9	4	μg/kg	286	328	13.5	0% - 20%
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg	296	334	12.1	0% - 20%
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	154	143	7.59	0% - 20%
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	162	186	13.8	0% - 20%
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	329	347	5.24	0% - 20%
		EP132B-SD: Perylene	198-55-0	4	μg/kg	108	# 82	26.8	0% - 20%
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	167	168	0.917	0% - 20%
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	39	42	7.24	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	159	152	4.12	0% - 20%
		EP132B-SD: Sum of PAHs		4	μg/kg	4210	4740	11.8	0% - 20%
		EP132B-SD: Naphthalene	91-20-3	5	μg/kg	30	10	96.9	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	7	6	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	μg/kg	41	42	0.00	No Limit
P132B: Polynucle	ar Aromatic Hydrocarbo	ons (QC Lot: 1965784)							
EB1823470-037	SG 02	EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	<4	0.00	No Limit
	00_02	EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Pyrene	129-00-0	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Perylene	198-55-0	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Sum of PAHs		4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	<5	0.00	No Limit

Page : 10 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP132B: Polynuclea	ar Aromatic Hydrocarbon	s (QC Lot: 1965784) - continued							
EB1823470-037	SG_02	EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	μg/kg	<5	<5	0.00	No Limit
EP132B: Polynuclea	ar Aromatic Hydrocarbon	s (QC Lot: 2005516)							
EB1823470-014	B1_02 (T2)	EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	<4	0.00	No Limit
	(/	EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	6	6	0.00	No Limit
		EP132B-SD: Pyrene	129-00-0	4	μg/kg	6	6	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	4	<4	0.00	No Limit
		2. 1622 62. 26.126(2 J).1146.4114.16116	205-82-3		100				
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Perylene	198-55-0	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Sum of PAHs		4	μg/kg	20	12	50.0	No Limit
		EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	μg/kg	<5	<5	0.00	No Limit
Sub-Matrix: WATER		<u> </u>				Laboratory I	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
	ls by ICP-MS (QC Lot: 19					- Criginal Hoodin	2 aprio ato 1100 art	1 2 (7.0)	recording 2mme (70)
EB1823470-048	Rinsate 1	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
LB 102047 0 040	Tanoate 1	EG020A-T: Caumum EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Arsenic EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
			7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-1: Lead EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Nickel	7440-66-6	0.001	mg/L	<0.001	<0.001	0.00	No Limit
EB1823813-005	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.000	0.00	No Limit
25 10200 10-000	, alonymous	EG020A-T: Cadmium EG020A-T: Arsenic	7440-38-2	0.0001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Arsenic EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
			7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Load	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Lead	1409-92-1	0.001	IIIg/L	\0.001	~ 0.001	0.00	INO LITTIL

Page : 11 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Metals	by ICP-MS (QC Lot: 196324	46) - continued							
EB1823813-005	Anonymous	EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
EG035T: Total Reco	verable Mercury by FIMS (Q	C Lot: 1963186)							
EB1823470-048	Rinsate 1	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit

Page : 12 of 23

Work Order : EB1823470 Amendment 3 Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG035T: Total Recoverable Mercury by FIMS (Low Level) (0	QCLot: 1963208)						
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	0.0555 mg/kg	96.8	70	130
EG035T: Total Recoverable Mercury by FIMS (Low Level) (0	CLot: 1963597)						
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	0.0555 mg/kg	130	70	130
EG035T: Total Recoverable Mercury by FIMS (Low Level) (0	OCI of: 1963602)						
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	0.0555 mg/kg	86.5	70	130
EG035T: Total Recoverable Mercury by FIMS (Low Level) (C			3 3		3 3			
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	0.0555 mg/kg	89.5	70	130
		0.01	mg/kg	-0.01	o.coco mg/kg	00.0	70	100
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 196	7440-38-2	1	ma/ka	<1.00	101 ma/ka	120	80	124
EG020-SD: Arsenic	7440-38-2	0.1	mg/kg	<0.1	101 mg/kg	109	87	124
EG020-SD: Cadmium			mg/kg		0.8 mg/kg			122
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	16.8 mg/kg	114	79	
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	41.7 mg/kg	115	85	118
EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	53.4 mg/kg	114	86	119
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	12.2 mg/kg	118	77	123
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	112 mg/kg	126	71	127
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 196	3596)							
EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	101 mg/kg	107	80	124
EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	0.8 mg/kg	97.6	87	122
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	16.8 mg/kg	112	79	129
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	41.7 mg/kg	111	85	118
EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	53.4 mg/kg	104	86	119
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	12.2 mg/kg	111	77	123
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	112 mg/kg	106	71	127
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 196	3603)							
EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	101 mg/kg	101	80	124
EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	0.8 mg/kg	108	87	122
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	16.8 mg/kg	107	79	129
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	41.7 mg/kg	107	85	118
EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	66.3 mg/kg	101	86	119
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	12.2 mg/kg	107	77	123
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	112 mg/kg	104	71	127
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 200)2068)							
EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	116 mg/kg	95.3	80	124
20020 05.7.100.110			3 3	1	- 3 3	1 1 1		

Page : 13 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020-SD: Total Metals in Sediments by ICPMS	(QCLot: 2002068) - continu	ued							
EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	0.8 mg/kg	104	87	122	
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	20.5 mg/kg	102	79	129	
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	52.9 mg/kg	91.8	85	118	
EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	66.3 mg/kg	90.1	86	119	
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	14.7 mg/kg	100.0	77	123	
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	183 mg/kg	75.9	71	127	
EP003: Total Organic Carbon (TOC) in Soil (QCI	Lot: 1971923)								
EP003: Total Organic Carbon		0.02	%	<0.02	0.66 %	100	70	130	
EP003: Total Organic Carbon (TOC) in Soil (QCI	Lot: 1971924)								
EP003: Total Organic Carbon		0.02	%	<0.02	1.03 %	102	70	130	
EP003: Total Organic Carbon (TOC) in Soil (QCI	Lot: 2015080)								
EP003: Total Organic Carbon		0.02	%	<0.02	1.94 %	99.2	70	130	
EP080-SD / EP071-SD: Total Petroleum Hydroca	rbons (QCLot: 1963210)								
EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	157 mg/kg	98.8	43	126	
EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	245 mg/kg	104	66	140	
EP071-SD: C29 - C36 Fraction		5	mg/kg	<5					
EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3					
EP080-SD / EP071-SD: Total Petroleum Hydroca	rbons (QCLot: 1963211)								
EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	16 mg/kg	76.2	66	120	
EP080-SD / EP071-SD: Total Petroleum Hydroca	rbons (QCI of: 1963598)								
EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	157 mg/kg	108	43	126	
EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	245 mg/kg	117	66	140	
EP071-SD: C29 - C36 Fraction		5	mg/kg	<5					
EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3					
EP080-SD / EP071-SD: Total Petroleum Hydroca	rbons (QCLot: 1963599)								
EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	16 mg/kg	100	66	120	
EP080-SD / EP071-SD: Total Petroleum Hydroca	rhons (OCI of: 2002072)								
EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	157 mg/kg	102	43	126	
EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	245 mg/kg	110	66	140	
EP071-SD: C29 - C36 Fraction		5	mg/kg	<5					
EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<6					
EP080-SD / EP071-SD: Total Petroleum Hydroca	rhons (QCI of: 2002073)								
EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	16 mg/kg	88.1	66	120	
EP080-SD / EP071-SD: Total Recoverable Hydro	carbons (OCLot: 1963210)								
EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	227 mg/kg	100	40	134	
EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	162 mg/kg	106	66	136	
EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5					
= 11.05.00.00.000	I		J 3	-				1	

Page : 14 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080-SD / EP071-SD: Total Recoverable Hydrocarbo	ns (QCLot: 1963210)	- continued							
EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3					
EP080-SD / EP071-SD: Total Recoverable Hydrocarbo	ns (QCLot: 1963211)								
EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	18.5 mg/kg	72.8	66	119	
EP080-SD / EP071-SD: Total Recoverable Hydrocarbo	ns (QCLot: 1963598)								
EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	227 mg/kg	111	40	134	
EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	162 mg/kg	119	66	136	
EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5					
EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3					
EP080-SD / EP071-SD: Total Recoverable Hydrocarbo	ns (QCLot: 1963599)								
EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	18.5 mg/kg	101	66	119	
EP080-SD / EP071-SD: Total Recoverable Hydrocarbo	ns (QCLot: 2002072)								
EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	227 mg/kg	104	40	134	
EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	162 mg/kg	110	66	136	
EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5					
EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<6					
EP080-SD / EP071-SD: Total Recoverable Hydrocarbo	ns (QCLot: 2002073)								
EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	18.5 mg/kg	88.8	66	119	
EP080-SD: BTEXN (QCLot: 1963211)									
EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	75.8	73	105	
EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	1 mg/kg	86.8	73	105	
EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	1 mg/kg	85.0	67	104	
EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	2 mg/kg	88.9	66	106	
	106-42-3								
EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	1 mg/kg	90.4	68	105	
EP080-SD: Total Xylenes		0.2	mg/kg	<0.2					
EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2					
EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	1 mg/kg	96.8	72	115	
EP080-SD: BTEXN (QCLot: 1963599)									
EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	95.2	73	105	
EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	1 mg/kg	94.6	73	105	
EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	1 mg/kg	95.5	67	104	
EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	2 mg/kg	97.2	66	106	
	106-42-3								
EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	1 mg/kg	95.4	68	105	
EP080-SD: Total Xylenes		0.2	mg/kg	<0.2					
EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2	4				
EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	1 mg/kg	88.5	72	115	
EP080-SD: BTEXN (QCLot: 2002073)									

Page : 15 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

### Conventation L68 L69 Might L69 L69	Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
PRINCE STEXN COLOT: 2002073) - continued PRINCE PR					Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
EPROBS DE Branzene 714-32 0.2 mg/kg 40.2 1 mg/kg 87.0 73 105 EPROBS DE BROWNE 108-88 0.2 mg/kg 40.2 1 mg/kg 88.5 73 105 EPROBS DE BROWNE 109-88 0.0 109-414 0.2 mg/kg 40.2 1 mg/kg 88.5 67 106 EPROBS DE BROWNE 109-88 0.0 109-414 0.2 mg/kg 40.2 1 mg/kg 88.5 67 106 EPROBS DE BROWNE 109-88 0.0 109-414 0.2 mg/kg 40.2 2 mg/kg 88.5 67 106 EPROBS DE BROWNE 109-414 0.2 mg/kg 40.2 2 mg/kg 87.0 mg/kg 87.	Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP008_SD: Trokene	EP080-SD: BTEXN (QCLot: 2002073) - continued								
EP080-SD: Ethybenzere	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	87.0	73	105
PROBLEM 108-38-3 108-18-3	EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	1 mg/kg	84.6	73	105
108-42-3	EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	1 mg/kg	83.5	67	104
EP808.SD critical Xylenes 9-54.7-6 0.2 mg/kg 4-0.2 1ng/kg 87.6 68 105. EP808.SD Total Xylenes	EP080-SD: meta- & para-Xylene		0.2	mg/kg	<0.2	2 mg/kg	86.1	66	106
EP089.SD: Total Xylenes — 0.2 mg/kg <0.2 m/c	EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	1 mg/kg	87.6	68	105
EP090- SD: Naphthalene 91-20-3 0.2 mg/kg <0.2 1 mg/kg 84.8 72 115 EP090- SD: Organotin Compounds (OCLot: 1983209) EP090- Monobulytin 1002-53-5 1 μg/Sn/kg 41 1.25 μg/Sn/kg 93.6 42 132 EP090- Thoulytin 56573-85-4 0.5 μg/Sn/kg <1 1.25 μg/Sn/kg 93.6 42 132 EP090- Thoulytin 1002-53-5 1 μg/Sn/kg 41 1.25 μg/Sn/kg 93.6 42 132 EP090- Thoulytin 1002-53-5 1 μg/Sn/kg 41 1.25 μg/Sn/kg 93.6 42 132 EP090- Thoulytin 1002-53-5 1 μg/Sn/kg 41 1.25 μg/Sn/kg 85.5 36 128 EP090- Thoulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 85.5 36 128 EP090- Thoulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 85.5 36 128 EP090- Thoulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 85.5 36 128 EP090- Doublytin 1002-53-5 1 μg/Sn/kg 41 1.25 μg/Sn/kg 85.5 36 128 EP090- Doublytin 1002-53-5 1 μg/Sn/kg 41 1.25 μg/Sn/kg 85.5 36 128 EP090- Doublytin 1002-53-5 1 μg/Sn/kg 41 1.25 μg/Sn/kg 85.6 42 139 EP090- Doublytin 1002-53-5 1 μg/Sn/kg 41 1.25 μg/Sn/kg 84.6 42 132 EP090- Thoulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 84.6 42 132 EP090- Thoulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 86.5 52 139 EP090- Organotin Compounds (OCLot: 1963604) EP090- Organotin Compounds (OCLot: 2002075) EP090- Organotin Compounds (OCLot: 196498) EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 81.0 36 128 EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 81.0 38 139 EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 86.5 52 139 EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 86.5 52 139 EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 86.5 52 139 EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 86.5 52 139 EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 86.5 52 139 EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 86.5 52 139 EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 86.5 52 139 EP090- Dibulytin 56573-85-4 0.5 μg/Sn/kg 41 1.25 μg/Sn/kg 86.5 52 139 EP090- Di	EP080-SD: Total Xylenes		0.2	mg/kg	<0.2				
EP999: Organotin Compounds (QCLot: 1963209)	EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2				
EPO90: Dibutyltin 78783-54-9 1 μgSn/kg <1 1.25 μgSn/kg 75.0 36 128 EPO90: Tributyltin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 93.6 42 132 EPO90: Tributyltin 56573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 79.3 52 139 EPO90: Monobutyltin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg 93.6 42 132 EPO90: Organotin Compounds (QCLot: 1963600) EPO90: Monobutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 91.1 42 132 EPO90: Dibutyltin 56573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg 91.1 42 132 EPO90: Organotin Compounds (QCLot: 1963604) EPO90: Monobutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 91.1 42 132 EPO90: Organotin Compounds (QCLot: 1963604) EPO90: Dibutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 62.3 52 139 EPO90: Organotin Compounds (QCLot: 1963604) EPO90: Dibutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 59.2 36 128 EPO90: Dibutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 84.6 42 132 EPO90: Organotin Compounds (QCLot: 1963604) EPO90: Organotin Compounds (QCLot: 2002075) EPO90: Organotin Compounds (QCLot: 1964998) EPO90: Organotin Compounds (QCLot: 1964998) EP131A: Alpha-BHC 319-85-7 0.5 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EPO90: Organotin Compounds (QCLot: 1964998) EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 63.4 2.6 141 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-84-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-84-7 0.5 μg/kg <0.50 5 μg/	EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	1 mg/kg	84.8	72	115
EPO90: Dibutyltin 78783-54-9 1 μgSn/kg <1 1.25 μgSn/kg 75.0 36 128 EPO90: Tributyltin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 93.6 42 132 EPO90: Tributyltin 56573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 79.3 52 139 EPO90: Monobutyltin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg 93.6 42 132 EPO90: Organotin Compounds (QCLot: 1963600) EPO90: Monobutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 91.1 42 132 EPO90: Dibutyltin 56573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg 91.1 42 132 EPO90: Organotin Compounds (QCLot: 1963604) EPO90: Monobutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 91.1 42 132 EPO90: Organotin Compounds (QCLot: 1963604) EPO90: Dibutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 62.3 52 139 EPO90: Organotin Compounds (QCLot: 1963604) EPO90: Dibutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 59.2 36 128 EPO90: Dibutyltin 1002-55-5 1 μgSn/kg <1 1.25 μgSn/kg 84.6 42 132 EPO90: Organotin Compounds (QCLot: 1963604) EPO90: Organotin Compounds (QCLot: 2002075) EPO90: Organotin Compounds (QCLot: 1964998) EPO90: Organotin Compounds (QCLot: 1964998) EP131A: Alpha-BHC 319-85-7 0.5 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EPO90: Organotin Compounds (QCLot: 1964998) EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 63.4 2.6 141 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-84-7 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: Alpha-BHC 319-84-7 0.5 μg/kg <0.50 5 μg/	EP090: Organotin Compounds (QCLot: 1963209)								
PP090: Tributyttin 56573-85-4 0.5 µgSn/kg <0.5 1.25 µgSn/kg 79.3 52 139	EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	1.25 µgSn/kg	75.0	36	128
PRO90: Tributyttin 56573-85-4 0.5 µgSn/kg <0.5 1.25 µgSn/kg 79.3 52 139	EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	1.25 μgSn/kg	93.6	42	132
EPO90: Monobutyltin 78763-54-9 1	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	1.25 µgSn/kg	79.3	52	139
EPO90: Monobutyltin 78763-54-9 1	EP090: Organotin Compounds (QCLot: 1963600)								
EP090: Tributyltin 56673-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 62.3 52 139 EP090: Organotin Compounds (QCLot: 1963604) EP090: Monobutyltin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg 59.2 36 128 EP090: Divilytin 566573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg 84.6 42 132 EP090: Tributyltin 566573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 96.5 52 139 EP090: Organotin Compounds (QCLot: 2002075) EP090: Monobutyltin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg #129 36 128 EP090: Tributyltin 566573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg #129 36 128 EP090: Tributyltin 566573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EP090: Tributyltin 566573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 119 52 139 EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: Aldrin 309-00-2 0.5 μg/kg <0.5 5 μg/kg <0.5 5 μg/kg 59.9 31 131 EP131A: beta-BHC 319-8-BG 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-8-BG 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 44'-DDD 72-55-9 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 44'-DDD 72-55-9 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 44'-DDT 72-55-9 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Sum of DDD + DDE + DDT 72-56-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138	EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	1.25 μgSn/kg	85.5	36	128
EP090: Organotin Compounds (QCLot: 1963604) EP090: Monobutyltin 78763-54-9 1 μgSn/kg <1	EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	1.25 μgSn/kg	91.1	42	132
EP090: Monobutyltin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg 59.2 36 128 EP090: Dibutyltin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 84.6 42 132 EP090: Tributyltin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 84.6 42 132 EP090: Tributyltin 56573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 96.5 52 139 EP090: Organotin Compounds (QCLot: 2002075) EP090: Monobutyltin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg #129 36 128 EP090: Dibutyltin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EP090: Tributyltin 56573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg 119 52 139 EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: alpha-BHC 319-84-6 0.5 μg/kg <0.50 5 μg/kg 53.2 18 136 EP131A: beta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 141 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 141 EP131A: 4.4-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8/72-5 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	1.25 μgSn/kg	62.3	52	139
EP090: Monobutyltin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg 59.2 36 128 EP090: Dibutyltin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 84.6 42 132 EP090: Tributyltin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 84.6 42 132 EP090: Tributyltin 56573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 96.5 52 139 EP090: Organotin Compounds (QCLot: 2002075) EP090: Monobutyltin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg #129 36 128 EP090: Dibutyltin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EP090: Tributyltin 56573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg 119 52 139 EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: alpha-BHC 319-84-6 0.5 μg/kg <0.50 5 μg/kg 53.2 18 136 EP131A: beta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 141 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 141 EP131A: 4.4-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4-DDT 72-54-8/72-5 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP090: Organotin Compounds (QCLot: 1963604)								
EP090: Tributyltin 56573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 96.5 52 139 EP090: Organotin Compounds (QCLot: 2002075) EP090: Monobutyltin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EP090: Tributyltin 56573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EP090: Tributyltin 56573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 119 52 139 EP131A: Aldrin 309-00-2 0.5 μg/kg <0.50 5 μg/kg 49.5 38 139 EP131A: alpha-BHC 319-84-6 0.5 μg/kg <0.50 5 μg/kg 53.2 18 136 EP131A: beta-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 4.4'-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4'-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 67.0 23 138 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 EP131A: Δum 72-54-8 0.5 μg/kg <0.50 5 μg/kg 64.6 30 140	EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	1.25 μgSn/kg	59.2	36	128
EP090: Organotin Compounds (QCLot: 2002075) EP090: Monobutyttin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg #129 36 128 EP090: Dibutyttin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EP090: Tributytin 566573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 119 52 139 EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: Aldrin 309-00-2 0.5 μg/kg <0.50 5 μg/kg 49.5 38 139 EP131A: alpha-BHC 319-84-6 0.5 μg/kg <0.50 5 μg/kg 53.2 118 136 EP131A: delta-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 4.4'-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4'-DDD 72-55-9 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4'-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Sum of DDD + DDE + DDT 72-54-872-5 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	1.25 μgSn/kg	84.6	42	132
EP090: MonobutyItin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg #129 36 128 EP090: DibutyItin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EP090: TributyItin 56573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg 119 52 139 EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: Aldrin 309-00-2 0.5 μg/kg <0.50 5 μg/kg 49.5 38 139 EP131A: alpha-BHC 319-84-6 0.5 μg/kg <0.50 5 μg/kg 53.2 18 136 EP131A: beta-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 4.4 '-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4 '-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4 '-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4 '-DDT 50-2-3 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Sum of DDD + DDE + DDT 72-54-8/72-5 0.5 μg/kg <0.50 5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	1.25 μgSn/kg	96.5	52	139
EP090: MonobutyItin 78763-54-9 1 μgSn/kg <1 1.25 μgSn/kg #129 36 128 EP090: DibutyItin 1002-53-5 1 μgSn/kg <1 1.25 μgSn/kg 122 42 132 EP090: TributyItin 56573-85-4 0.5 μgSn/kg <1 1.25 μgSn/kg 119 52 139 EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: Aldrin 309-00-2 0.5 μg/kg <0.50 5 μg/kg 49.5 38 139 EP131A: alpha-BHC 319-84-6 0.5 μg/kg <0.50 5 μg/kg 53.2 18 136 EP131A: beta-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 4.4 '-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4 '-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4 '-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4 '-DDT 50-2-3 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Sum of DDD + DDE + DDT 72-54-8/72-5 0.5 μg/kg <0.50 5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP090: Organotin Compounds (QCLot: 2002075)								
EP090: TributyItin 56573-85-4 0.5 μgSn/kg <0.5 1.25 μgSn/kg 119 52 139 EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: Aldrin 309-00-2 0.5 μg/kg <0.50 5 μg/kg 49.5 38 139 EP131A: beta-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 4.4'-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4'-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: 4.4'-DDT 50-29-3 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Sum of DDD + DDE + DDT 72-54-8/72-5 5-9/50-2 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	1.25 μgSn/kg	# 129	36	128
EP131A: Organochlorine Pesticides (QCLot: 1964998) EP131A: Aldrin 309-00-2 0.5 μg/kg <0.50	EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	1.25 μgSn/kg	122	42	132
EP131A: Aldrin 309-00-2 0.5 μg/kg <0.50 5 μg/kg 49.5 38 139 EP131A: alpha-BHC 319-84-6 0.5 μg/kg <0.50 5 μg/kg 53.2 18 136 EP131A: beta-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 4.4'-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4'-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 47.2 35 129 EP131A: 4.4'-DDT 50-29-3 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Sum of DDD + DDE + DDT 72-54-8/72-5 0.5 μg/kg <0.50 5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	1.25 μgSn/kg	119	52	139
EP131A: Aldrin 309-00-2 0.5 μg/kg <0.50 5 μg/kg 49.5 38 139 EP131A: alpha-BHC 319-84-6 0.5 μg/kg <0.50 5 μg/kg 53.2 18 136 EP131A: beta-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 4.4'-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4'-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 47.2 35 129 EP131A: 4.4'-DDT 50-29-3 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Sum of DDD + DDE + DDT 72-54-8/72-5 0.5 μg/kg <0.50 5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP131A: Organochlorine Pesticides (QCLot: 1964)	998)							
EP131A: beta-BHC 319-85-7 0.5 μg/kg <0.50 5 μg/kg 59.9 31 131 EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 4.4'-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4'-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 47.2 35 129 EP131A: 4.4'-DDT 50-29-3 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Sum of DDD + DDE + DDT 72-54-8/72-5 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140 EP131A: Dieldrin 55.6 μg/kg 55.6	EP131A: Aldrin	309-00-2	0.5	μg/kg	<0.50	5 μg/kg	49.5	38	139
EP131A: delta-BHC 319-86-8 0.5 μg/kg <0.50 5 μg/kg 64.6 37 140 EP131A: 4.4'-DDD 72-54-8 0.5 μg/kg <0.50 5 μg/kg 63.4 26 141 EP131A: 4.4'-DDE 72-55-9 0.5 μg/kg <0.50 5 μg/kg 47.2 35 129 EP131A: 4.4'-DDT 50-29-3 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Sum of DDD + DDE + DDT 72-54-8/72-5 5-9/50-2 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP131A: alpha-BHC	319-84-6	0.5	μg/kg	<0.50	5 μg/kg	53.2	18	136
EP131A: 4.4'-DDD	EP131A: beta-BHC	319-85-7	0.5	μg/kg	<0.50	5 μg/kg	59.9	31	131
EP131A: 4.4'-DDE	EP131A: delta-BHC	319-86-8	0.5	μg/kg	<0.50	5 μg/kg	64.6	37	140
EP131A: 4.4'-DDT 50-29-3 0.5 μg/kg <0.50 5 μg/kg 75.0 23 138 EP131A: Sum of DDD + DDE + DDT 72-54-8/72-5 5-9/50-2 EP131A: Dieldrin 60-57-1 0.5 μg/kg <0.50 5 μg/kg 55.6 30 140	EP131A: 4.4`-DDD	72-54-8	0.5	μg/kg	<0.50	5 μg/kg	63.4	26	141
EP131A: Sum of DDD + DDE + DDT 72-54-8/72-5 5-9/50-2 EP131A: Dieldrin 72-54-8/72-5 0.5 μg/kg <0.50 5-μg/kg <0.50 5 μg/kg 55.6 30 140	EP131A: 4.4`-DDE	72-55-9	0.5	μg/kg	<0.50	5 μg/kg	47.2	35	129
5-9/50-2	EP131A: 4.4`-DDT	50-29-3	0.5	μg/kg	<0.50	5 μg/kg	75.0	23	138
	EP131A: Sum of DDD + DDE + DDT		0.5	μg/kg	<0.50				
EP131A; alpha-Endosulfan 959-98-8 0.5 μg/kg <0.50 5 μg/kg 50.8 38 140	EP131A: Dieldrin	60-57-1	0.5	μg/kg	<0.50	5 μg/kg	55.6	30	140
	EP131A: alpha-Endosulfan	959-98-8	0.5	μg/kg	<0.50	5 μg/kg	50.8	38	140
EP131A: beta-Endosulfan 33213-65-9 0.5 μg/kg <0.50 5 μg/kg 45.4 32 152	EP131A: beta-Endosulfan	33213-65-9	0.5	μg/kg	<0.50	5 μg/kg	45.4	32	152

Page : 16 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP131A: Organochlorine Pesticides (QCLot: 196	4998) - continued								
EP131A: Endosulfan sulfate	1031-07-8	0.5	μg/kg	<0.50	5 μg/kg	59.6	36	155	
EP131A: Endosulfan (sum)	115-29-7	0.5	μg/kg	<0.50					
EP131A: Endrin	72-20-8	0.5	μg/kg	<0.50	5 μg/kg	70.1	26	158	
EP131A: Endrin aldehyde	7421-93-4	0.5	μg/kg	<0.50	5 μg/kg	39.3	20	118	
EP131A: Endrin ketone	53494-70-5	0.5	μg/kg	<0.50	5 μg/kg	45.2	13	135	
EP131A: Heptachlor	76-44-8	0.5	μg/kg	<0.50	5 μg/kg	57.7	39	155	
EP131A: Heptachlor epoxide	1024-57-3	0.5	μg/kg	<0.50	5 μg/kg	42.1	34	148	
EP131A: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/kg	<0.50	5 μg/kg	38.5	26	152	
EP131A: gamma-BHC	58-89-9	0.25	μg/kg	<0.25	5 μg/kg	36.7	31	137	
EP131A: Methoxychlor	72-43-5	0.5	μg/kg	<0.50	5 μg/kg	84.5	36	152	
EP131A: cis-Chlordane	5103-71-9	0.25	μg/kg	<0.25	5 μg/kg	84.7	36	142	
EP131A: trans-Chlordane	5103-74-2	0.25	μg/kg	<0.25	5 μg/kg	40.7	30	138	
EP131A: Total Chlordane (sum)		0.25	μg/kg	<0.25					
EP132B: Polynuclear Aromatic Hydrocarbons(Q	CLot: 1965783)								
EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	25 μg/kg	101	63	129	
EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	25 μg/kg	114	64	128	
EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	25 μg/kg	88.6	65	129	
EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	25 μg/kg	85.2	68	132	
EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	25 μg/kg	79.0	68	124	
EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	<4	25 μg/kg	85.8	64	134	
EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	25 μg/kg	83.7	65	131	
EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	<4	25 μg/kg	81.2	64	130	
EP132B-SD: Pyrene	129-00-0	4	μg/kg	<4	25 μg/kg	86.5	67	133	
EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	<4	25 μg/kg	87.4	62	130	
EP132B-SD: Chrysene	218-01-9	4	μg/kg	<4	25 μg/kg	83.4	65	133	
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg	<4	25 μg/kg	80.6	68	120	
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	<4	25 μg/kg	83.4	61	133	
EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	<4	25 μg/kg	83.2	63	127	
EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	<4	25 μg/kg	78.2	66	118	
EP132B-SD: Perylene	198-55-0	4	μg/kg	<4	25 μg/kg	81.8	69	119	
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<4	25 μg/kg	84.0	66	120	
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	25 μg/kg	79.2	64	122	
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<4	25 μg/kg	81.0	64	120	
EP132B-SD: Coronene	191-07-1	5	μg/kg	<5	25 μg/kg	84.1	68	136	
EP132B-SD: Sum of PAHs		4	μg/kg	<4					
EP132B: Polynuclear Aromatic Hydrocarbons(Q	CLot: 1965784)								
EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	25 μg/kg	93.4	63	129	
EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	25 μg/kg	90.0	64	128	

Page : 17 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons (Q	CLot: 1965784) - continue	ed						
EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	25 μg/kg	93.8	65	129
EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	25 μg/kg	86.5	68	132
EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	25 μg/kg	87.0	68	124
EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	<4	25 μg/kg	88.2	64	134
EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	25 μg/kg	88.8	65	131
EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	<4	25 μg/kg	85.5	64	130
EP132B-SD: Pyrene	129-00-0	4	μg/kg	<4	25 μg/kg	83.4	67	133
EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	<4	25 μg/kg	91.1	62	130
EP132B-SD: Chrysene	218-01-9	4	μg/kg	<4	25 μg/kg	89.1	65	133
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg	<4	25 μg/kg	90.8	68	120
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	<4	25 μg/kg	82.4	61	133
EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	<4	25 μg/kg	83.3	63	127
EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	<4	25 μg/kg	88.6	66	118
EP132B-SD: Perylene	198-55-0	4	μg/kg	<4	25 μg/kg	88.3	69	119
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<4	25 μg/kg	89.1	66	120
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	25 μg/kg	89.3	64	122
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<4	25 μg/kg	88.4	64	120
EP132B-SD: Coronene	191-07-1	5	μg/kg	<5	25 μg/kg	91.9	68	136
EP132B-SD: Sum of PAHs		4	μg/kg	<4				
EP132B: Polynuclear Aromatic Hydrocarbons (Q	CLot: 2005516)							
EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	25 μg/kg	89.2	63	129
EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	25 μg/kg	108	64	128
EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	25 μg/kg	107	65	129
EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	25 μg/kg	105	68	132
EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	25 μg/kg	113	68	124
EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	<4	25 μg/kg	112	64	134
EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	25 μg/kg	107	65	131
EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	<4	25 μg/kg	111	64	130
EP132B-SD: Pyrene	129-00-0	4	μg/kg	<4	25 μg/kg	109	67	133
EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	<4	25 μg/kg	115	62	130
EP132B-SD: Chrysene	218-01-9	4	μg/kg	<4	25 μg/kg	104	65	133
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	<4	25 μg/kg	102	68	120
, , ,	205-82-3							
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	<4	25 μg/kg	103	61	133
EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	<4	25 μg/kg	105	63	127
EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	<4	25 μg/kg	107	66	118
EP132B-SD: Perylene	198-55-0	4	μg/kg	<4	25 μg/kg	106	69	119
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<4	25 μg/kg	110	66	120

Page : 18 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons (QC	Lot: 2005516) - continue	ed						
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	25 μg/kg	110	64	122
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<4	25 μg/kg	110	64	120
EP132B-SD: Coronene	191-07-1	5	μg/kg	<5	25 μg/kg	108	68	136
EP132B-SD: Sum of PAHs		4	μg/kg	<4				
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 1963246)							
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	101	88	112
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.5	88	111
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	102	89	115
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.2 mg/L	109	88	116
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	99.2	89	112
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	103	88	116
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.2 mg/L	100	84	114
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 1963186)							
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	101	84	118

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Repor	•	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035T: Total Re	coverable Mercury by FIMS (Low Level) (QCLot: 196320	8)					
EB1823470-016	B1_07	EG035T-LL: Mercury	7439-97-6	0.5 mg/kg	91.2	70	130
EG035T: Total Re	coverable Mercury by FIMS (Low Level) (QCLot: 196359	7)					
EB1823470-036	SG_01	EG035T-LL: Mercury	7439-97-6	0.5 mg/kg	84.3	70	130
EG035T: Total Re	coverable Mercury by FIMS (Low Level) (QCLot: 196360	2)					
EB1823470-002	SB_02 (T2)	EG035T-LL: Mercury	7439-97-6	0.5 mg/kg	82.7	70	130
EG035T: Total Re	coverable Mercury by FIMS (Low Level) (QCLot: 200206	9)					
EB1823470-015	B1_02 (T3)	EG035T-LL: Mercury	7439-97-6	0.5 mg/kg	84.8	70	130
EG020-SD: Total I	Metals in Sediments by ICPMS (QCLot: 1963207)						
EB1823470-016	B1_07	EG020-SD: Arsenic	7440-38-2	50 mg/kg	95.1	70	130
		EG020-SD: Cadmium	7440-43-9	25 mg/kg	95.9	70	130
		EG020-SD: Chromium	7440-47-3	50 mg/kg	86.5	70	130

Page : 19 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

ub-Matrix: SOIL				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
boratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G020-SD: Total M	etals in Sediments by ICPMS (QCLot: 1963207) - conti	nued					
B1823470-016	B1_07	EG020-SD: Copper	7440-50-8	50 mg/kg	82.4	70	130
		· ·	7439-92-1	50 mg/kg	101	70	130
		EG020-SD: Nickel	7440-02-0	50 mg/kg	94.2	70	130
		EG020-SD: Zinc	7440-66-6	50 mg/kg	79.9	70	130
G020-SD: Total M	etals in Sediments by ICPMS (QCLot: 1963596)						
B1823470-036	SG 01	EG020-SD: Arsenic	7440-38-2	50 mg/kg	93.4	70	130
	_		7440-43-9	25 mg/kg	100	70	130
			7440-47-3	50 mg/kg	91.5	70	130
			7440-50-8	50 mg/kg	91.7	70	130
		20020 02: 00ppo.	7439-92-1	50 mg/kg	103	70	130
			7440-02-0	50 mg/kg	92.6	70	130
			7440-66-6	50 mg/kg	88.5	70	130
G020-SD: Total M	etals in Sediments by ICPMS (QCLot: 1963603)						
B1823470-002	SB 02 (T2)	EG020-SD: Arsenic	7440-38-2	50 mg/kg	89.2	70	130
LD 1023-7 0-002	05_02 (12)	20020 02:74:00:110	7440-43-9	25 mg/kg	101	70	130
		25025 52. 544	7440-47-3	50 mg/kg	83.2	70	130
		20020 02: 0:::0::::::::::	7440-50-8	50 mg/kg	87.0	70	130
			7439-92-1	50 mg/kg	107	70	130
			7440-02-0	50 mg/kg	86.8	70	130
		20020 02: 111010:	7440-66-6	50 mg/kg	81.8	70	130
	(EG020-SD: Zinc	7440-00-0	50 mg/kg	01.0	70	130
	etals in Sediments by ICPMS (QCLot: 2002068)						
EB1823470-015	B1_02 (T3)	20020 02.7 #66.#6	7440-38-2	50 mg/kg	95.3	70	130
		20020 02: 000::::::::::::::::::::::::::	7440-43-9	25 mg/kg	96.2	70	130
			7440-47-3	50 mg/kg	97.4	70	130
		20020 CD. Copper	7440-50-8	50 mg/kg	90.4	70	130
		20020 02: 2000	7439-92-1	50 mg/kg	98.4	70	130
			7440-02-0	50 mg/kg	99.2	70	130
		EG020-SD: Zinc	7440-66-6	50 mg/kg	102	70	130
P080-SD / EP071-	SD: Total Petroleum Hydrocarbons (QCLot: 1963210)						
EB1823470-016	B1_07	EP071-SD: C10 - C14 Fraction		157 mg/kg	88.8	70	130
		EP071-SD: C15 - C28 Fraction		245 mg/kg	95.8	70	130
P080-SD / EP071-	SD: Total Petroleum Hydrocarbons (QCLot: 1963211)						
EB1823470-016	B1_07	EP080-SD: C6 - C9 Fraction		8 mg/kg	# 69.3	70	130
P080-SD / EP071-	SD: Total Petroleum Hydrocarbons (QCLot: 1963598)					·	
EB1823470-036	SG_01	EP071-SD: C10 - C14 Fraction		157 mg/kg	102	70	130
		EP071-SD: C15 - C28 Fraction		245 mg/kg	109	70	130
	SD: Total Petroleum Hydrocarbons (QCLot: 1963599)						

Page : 20 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

ub-Matrix: SOIL				Ma Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P080-SD / EP071	-SD: Total Petroleum Hydrocarbons (QCLo	t: 1963599) - continued					
B1823470-036	SG_01	EP080-SD: C6 - C9 Fraction		8 mg/kg	89.2	70	130
P080-SD / EP071	-SD: Total Petroleum Hydrocarbons(QCLo	t: 2002072)					
EB1823470-015	B1_02 (T3)	EP071-SD: C10 - C14 Fraction		157 mg/kg	90.4	70	130
		EP071-SD: C15 - C28 Fraction		245 mg/kg	107	70	130
P080-SD / EP071	-SD: Total Petroleum Hydrocarbons(QCLo	t: 2002073)					
B1823470-015	B1_02 (T3)	EP080-SD: C6 - C9 Fraction		8 mg/kg	# 69.9	70	130
P080-SD / EP071	-SD: Total Recoverable Hydrocarbons (QC	Lot: 1963210)					
B1823470-016	B1_07	EP071-SD: >C10 - C16 Fraction		227 mg/kg	91.6	70	130
		EP071-SD: >C16 - C34 Fraction		162 mg/kg	97.8	70	130
P080-SD / EP071	-SD: Total Recoverable Hydrocarbons (QC	Lot: 1963211)					
EB1823470-016	B1_07	EP080-SD: C6 - C10 Fraction	C6_C10	8 mg/kg	# 69.8	70	130
P080-SD / EP071	-SD: Total Recoverable Hydrocarbons (QC	Lot: 1963598)	_				
EB1823470-036	SG_01	EP071-SD: >C10 - C16 Fraction		227 mg/kg	104	70	130
	1-3-1	EP071-SD: >C16 - C34 Fraction		162 mg/kg	112	70	130
P080-SD / EP071	-SD: Total Recoverable Hydrocarbons(QC						
EB1823470-036	SG 01	EP080-SD: C6 - C10 Fraction	C6_C10	8 mg/kg	89.9	70	130
	-SD: Total Recoverable Hydrocarbons (QC		30_0.0	5gg	55.5		.00
EB1823470-015	B1_02 (T3)	EP071-SD: >C10 - C16 Fraction		227 mg/kg	95.8	70	130
_B1020 4 70-010	B1_02 (13)	EP071-SD: >C10 - C16 Fraction		162 mg/kg	108	70	130
D080-SD / ED071	-SD: Total Recoverable Hydrocarbons(QC				.00		
EB1823470-015	B1 02 (T3)		C6 C10	8 mg/kg	72.2	70	130
	_ , ,	EP080-SD: C6 - C10 Fraction	00_010	o mg/kg	12.2	70	130
	(QCLot: 1963211)		74.40.0	0 "	" 00 0	70	100
EB1823470-016	B1_07	EP080-SD: Benzene	71-43-2 108-88-3	2 mg/kg 2 mg/kg	# 63.9 # 68.9	70 70	130 130
	(20)	EP080-SD: Toluene	100-00-3	2 mg/kg	# 00.9	70	130
	(QCLot: 1963599)			- "			
EB1823470-036	SG_01	EP080-SD: Benzene	71-43-2	2 mg/kg	94.6	70	130
		EP080-SD: Toluene	108-88-3	2 mg/kg	91.7	70	130
	(QCLot: 2002073)						
EB1823470-015	B1_02 (T3)	EP080-SD: Benzene	71-43-2	2 mg/kg	# 57.4	70	130
		EP080-SD: Toluene	108-88-3	2 mg/kg	# 57.5	70	130
	Compounds (QCLot: 1963209)						
EB1823470-016	B1_07	EP090: Monobutyltin	78763-54-9	1.25 μgSn/kg	# 7.59	35	130
		EP090: DibutyItin	1002-53-5	1.25 µgSn/kg	65.1	20	130
		EP090: Tributyltin	56573-85-4	1.25 μgSn/kg	57.2	20	130

Page : 21 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

ub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P090: Organotin	Compounds (QCLot: 1963600)						
B1823470-036	SG 01	EP090: Monobutyltin	78763-54-9	1.25 µgSn/kg	56.0	35	130
		EP090: Dibutyltin	1002-53-5	1.25 µgSn/kg	90.9	20	130
		EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	74.8	20	130
P090: Organotin	Compounds (QCLot: 1963604)						
B1823470-002	SB_02 (T2)	EP090: Monobutyltin	78763-54-9	1.25 µgSn/kg	# 9.01	35	130
51020110 002	05_02 (12)	EP090: Dibutyltin	1002-53-5	1.25 µgSn/kg	102	20	130
		EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	126	20	130
DOOD: Organistin	Compounds (OCL et 2002075)	El 656. Hibatyani		iii pgoiiii g	.20		.00
	Compounds (QCLot: 2002075)		70700 54 0	4.05 0.0	" 10 0	~-	400
B1823470-015	B1_02 (T3)	EP090: Monobutyltin	78763-54-9	1.25 µgSn/kg	# 18.3	35	130
		EP090: DibutyItin	1002-53-5	1.25 µgSn/kg	67.8	20	130
		EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	98.2	20	130
P131A: Organoch	llorine Pesticides (QCLot: 1964998)						
B1823470-024	TB_05 (T1)	EP131A: Aldrin	309-00-2	5 μg/kg	88.3	23	153
		EP131A: alpha-BHC	319-84-6	5 μg/kg	57.9	18	156
		EP131A: beta-BHC	319-85-7	5 μg/kg	72.7	25	153
		EP131A: delta-BHC	319-86-8	5 μg/kg	84.1	25	147
		EP131A: 4.4`-DDD	72-54-8	5 μg/kg	29.0	26	150
		EP131A: 4.4`-DDE	72-55-9	5 μg/kg	59.4	31	125
		EP131A: 4.4`-DDT	50-29-3	5 μg/kg	83.6	23	163
		EP131A: Dieldrin	60-57-1	5 μg/kg	55.3	30	140
		EP131A: alpha-Endosulfan	959-98-8	5 µg/kg	42.3	29	135
		EP131A: beta-Endosulfan	33213-65-9	5 µg/kg	45.2	23	141
		EP131A: Endosulfan sulfate	1031-07-8	5 μg/kg	68.8	16	156
		EP131A: Endrin	72-20-8	5 μg/kg	83.2	18	162
		EP131A: Endrin aldehyde	7421-93-4	5 μg/kg	50.6	20	116
		EP131A: Endrin ketone	53494-70-5	5 μg/kg	45.2	13	151
		EP131A: Heptachlor	76-44-8	5 μg/kg	53.9	24	170
		EP131A: Heptachlor epoxide	1024-57-3	5 μg/kg	45.2	28	140
		EP131A: Hexachlorobenzene (HCB)	118-74-1	5 μg/kg	28.9	18	144
		EP131A: gamma-BHC	58-89-9	5 μg/kg	45.5	22	158
		EP131A: Methoxychlor	72-43-5	5 μg/kg	94.4	24	158
		EP131A: cis-Chlordane	5103-71-9	5 μg/kg	41.8	27	139
		EP131A: trans-Chlordane	5103-74-2	5 μg/kg	47.0	30	138
P132B: Polynucle	ear Aromatic Hydrocarbons (QCLot: 1965	783)					
B1823470-013	B1_02 (T1)	EP132B-SD: Naphthalene	91-20-3	25 μg/kg	115	70	130
		EP132B-SD: 2-Methylnaphthalene	91-57-6	25 μg/kg	119	70	130
		EP132B-SD: Acenaphthylene	208-96-8	25 μg/kg	103	70	130
		EP132B-SD: Acenaphthene	83-32-9	25 μg/kg	103	70	130

Page : 22 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

ub-Matrix: SOIL		M	atrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery I	imits (%)
boratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P132B: Polynucl	ear Aromatic Hydrocarbons (QCLot: 1965783)	- continued					
B1823470-013	B1 02 (T1)	EP132B-SD: Fluorene	86-73-7	25 μg/kg	98.1	70	130
	_	EP132B-SD: Phenanthrene	85-01-8	25 μg/kg	98.3	70	130
		EP132B-SD: Anthracene	120-12-7	25 μg/kg	102	70	130
		EP132B-SD: Fluoranthene	206-44-0	25 μg/kg	# Not	70	130
					Determined		
		EP132B-SD: Pyrene	129-00-0	25 μg/kg	77.4	70	130
		EP132B-SD: Benz(a)anthracene	56-55-3	25 μg/kg	82.1	70	130
		EP132B-SD: Chrysene	218-01-9	25 μg/kg	101	70	130
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 μg/kg	82.2	70	130
			205-82-3				
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 μg/kg	75.9	70	130
		EP132B-SD: Benzo(e)pyrene	192-97-2	25 μg/kg	84.1	70	130
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 μg/kg	83.2	70	130
		EP132B-SD: Perylene	198-55-0	25 μg/kg	99.4	70	130
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 μg/kg	85.0	70	130
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 μg/kg	86.5	70	130
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	25 μg/kg	89.1	70	130
		EP132B-SD: Coronene	191-07-1	25 μg/kg	107	70	130
P132B: Polynucl	ear Aromatic Hydrocarbons (QCLot: 1965784)						
B1823470-037	SG_02	EP132B-SD: Naphthalene	91-20-3	25 μg/kg	104	70	130
		EP132B-SD: 2-Methylnaphthalene	91-57-6	25 μg/kg	108	70	130
		EP132B-SD: Acenaphthylene	208-96-8	25 μg/kg	105	70	130
		EP132B-SD: Acenaphthene	83-32-9	25 μg/kg	88.4	70	130
		EP132B-SD: Fluorene	86-73-7	25 μg/kg	89.7	70	130
		EP132B-SD: Phenanthrene	85-01-8	25 μg/kg	90.9	70	130
		EP132B-SD: Anthracene	120-12-7	25 μg/kg	94.0	70	130
		EP132B-SD: Fluoranthene	206-44-0	25 μg/kg	93.7	70	130
		EP132B-SD: Pyrene	129-00-0	25 μg/kg	91.6	70	130
		EP132B-SD: Benz(a)anthracene	56-55-3	25 μg/kg	94.2	70	130
		EP132B-SD: Chrysene	218-01-9	25 μg/kg	87.8	70	130
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 μg/kg	112	70	130
			205-82-3				
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 μg/kg	88.2	70	130
		EP132B-SD: Benzo(e)pyrene	192-97-2	25 μg/kg	90.9	70	130
			50-32-8	25 μg/kg	104	70	130
		EP132B-SD: Benzo(a)pyrene	00 02 0	- 15 5			
		EP132B-SD: Benzo(a)pyrene EP132B-SD: Perylene	198-55-0	25 μg/kg	104	70	130
						70 70	
		EP132B-SD: Perylene	198-55-0	25 μg/kg	104		130 130 130

Page : 23 of 23

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

ub-Matrix: SOIL				М	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P132B: Polynuci	ear Aromatic Hydrocarbons (QCLot: 1965784) - continued					
B1823470-037	SG_02	EP132B-SD: Coronene	191-07-1	25 μg/kg	113	70	130
P132B: Polynuci	lear Aromatic Hydrocarbons (QCLot: 2005516	()					
B1823470-014	B1_02 (T2)	EP132B-SD: Naphthalene	91-20-3	25 µg/kg	86.4	70	130
	_ ` '	EP132B-SD: 2-Methylnaphthalene	91-57-6	25 μg/kg	83.7	70	130
		EP132B-SD: Acenaphthylene	208-96-8	25 μg/kg	88.2	70	130
		EP132B-SD: Acenaphthene	83-32-9	25 μg/kg	86.1	70	130
		EP132B-SD: Fluorene	86-73-7	25 μg/kg	104	70	130
		EP132B-SD: Phenanthrene	85-01-8	25 μg/kg	86.0	70	130
		EP132B-SD: Anthracene	120-12-7	25 μg/kg	89.4	70	130
		EP132B-SD: Fluoranthene	206-44-0	25 μg/kg	90.2	70	130
		EP132B-SD: Pyrene	129-00-0	25 μg/kg	86.5	70	130
		EP132B-SD: Benz(a)anthracene	56-55-3	25 μg/kg	92.9	70	130
		EP132B-SD: Chrysene	218-01-9	25 μg/kg	82.9	70	130
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 µg/kg	81.3	70	130
		El 1025 Ob. Belizo(6-j)ildoralitilelle	205-82-3	== F55			
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 μg/kg	82.6	70	130
		EP132B-SD: Benzo(e)pyrene	192-97-2	25 μg/kg	85.5	70	130
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 μg/kg	89.3	70	130
		EP132B-SD: Perylene	198-55-0	25 μg/kg	86.0	70	130
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 μg/kg	86.4	70	130
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 µg/kg	85.0	70	130
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	25 μg/kg	87.4	70	130
		EP132B-SD: Coronene	191-07-1	25 µg/kg	88.4	70	130
p-Matrix: WATER		El 1025 05. Odiolicito			atrix Spike (MS) Report		100
D-Matrix. WATER				Spike	SpikeRecovery(%)	Recovery	Limits (%)
boratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G020T: Total Me	tals by ICP-MS (QCLot: 1963246)						
B1823470-049	Rinsate 2	EG020A-T: Arsenic	7440-38-2	0.1 mg/L	110	70	130
		EG020A-T: Cadmium	7440-43-9	0.1 mg/L	99.3	70	130
		EG020A-T: Chromium	7440-47-3	0.1 mg/L	102	70	130
		EG020A-T: Copper	7440-50-8	0.2 mg/L	101	70	130
		EG020A-T: Lead	7439-92-1	0.1 mg/L	102	70	130
		EG020A-T: Nickel	7440-02-0	0.1 mg/L	104	70	130
		EG020A-T: Zinc	7440-66-6	0.2 mg/L	106	70	130
G035T: Total Re	ecoverable Mercury by FIMS (QCLot: 1963186						1
B1823470-049	Rinsate 2		7439-97-6	0.01 mg/L	106	70	130
_D 1023470-048	MIISAUS Z	EG035T: Mercury	1435-51-0	0.01 Hig/L	100	70	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EB1823470** Page : 1 of 17

Amendment : 3

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Telephone : +61 7 3552 8662

Project : 301001.02018 - Port of Mackay Sediment Sampling Date Samples Received : 27-Sep-2018

Site :---- Issue Date : 11-Dec-2018

Sampler : NICHOLAS BAINTON No. of samples received : 58
Order number : No. of samples analysed : 40

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

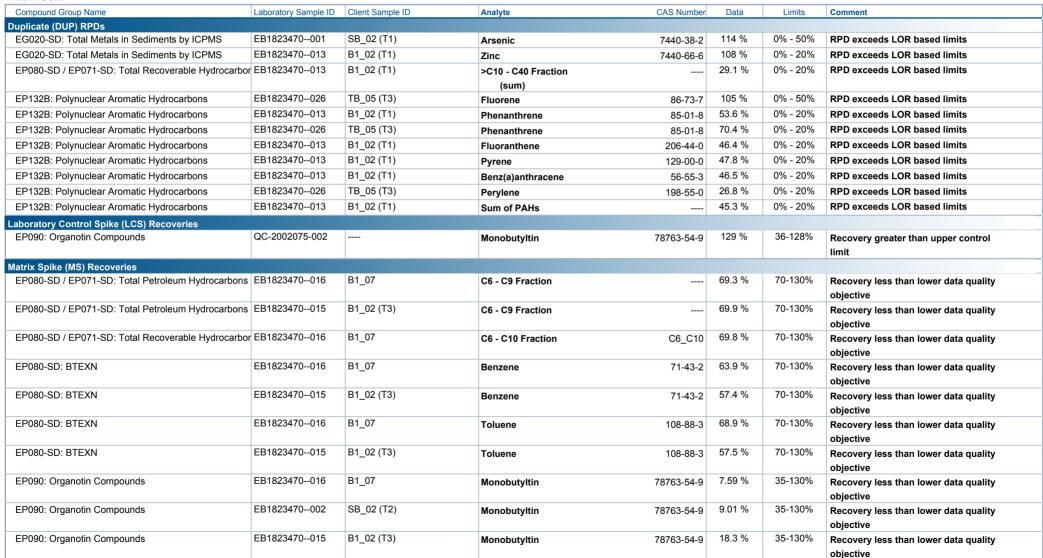
Outliers: Analysis Holding Time Compliance

Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 17


Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Regular Sample Surrogates

Sub-Matrix: SOIL

Page : 3 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP090S: Organotin Surrogate	EB1823470-038	SG_03	Tripropyltin		153 %	35-130 %	Recovery greater than upper data
							quality objective
EP090S: Organotin Surrogate	EB1823470-009	SB_58	Tripropyltin		142 %	35-130 %	Recovery greater than upper data
							quality objective
EP090S: Organotin Surrogate	EB1823470-034	REF_02	Tripropyltin		149 %	35-130 %	Recovery greater than upper data
							quality objective

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Method		E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA055: Moisture Content (Dried @ 105-110	°C)						
Soil Glass Jar - Unpreserved							
B1_02 (T2),	B1_02 (T3)				25-Oct-2018	10-Oct-2018	15
EG035T: Total Recoverable Mercury by FIM	ns en						
Soil Glass Jar - Unpreserved							
B1_02 (T2),	B1_02 (T3)	26-Oct-2018	24-Oct-2018	2	29-Oct-2018	24-Oct-2018	5
EP003: Total Organic Carbon (TOC) in Soil							
Pulp Bag							
B1_02 (T2),	B1_02 (T3)	01-Nov-2018	24-Oct-2018	8	01-Nov-2018	24-Oct-2018	8
EP080/071: Total Recoverable Hydrocarbor	ns - NEPM 2013 Fractions						
Soil Glass Jar - Unpreserved							
B1_02 (T2),	B1_02 (T3)	26-Oct-2018	10-Oct-2018	16			
EP080-SD / EP071-SD: Total Petroleum Hyd	Irocarbons						
Soil Glass Jar - Unpreserved							
B1_02 (T2),	B1_02 (T3)	26-Oct-2018	10-Oct-2018	16	26-Oct-2018	10-Oct-2018	16
Soil Glass Jar - Unpreserved	D4 02 (T2)	26-Oct-2018	10-Oct-2018	16			
B1_02 (T2),	B1_02 (T3)	26-00:-2018	10-001-2016	10			
EP080-SD / EP071-SD: Total Recoverable H	ydrocarbons				I	I	
Soil Glass Jar - Unpreserved B1 02 (T2),	B1 02 (T3)	26-Oct-2018	10-Oct-2018	16	26-Oct-2018	10-Oct-2018	16
	B1_02 (10)	20-001-2010	10-001-2010	10	20-001-2010	10-001-2010	10
EP080-SD: BTEXN Soil Glass Jar - Unpreserved					<u> </u>		
B1_02 (T2),	B1_02 (T3)	26-Oct-2018	10-Oct-2018	16	26-Oct-2018	10-Oct-2018	16
EP090: Organotin Compounds	51_52 (10)	20 00(2010	10 001 2010	.,	20 000 2010	10 000 2010	
Soil Glass Jar - Unpreserved					I		
B1 02 (T2),	B1_02 (T3)	26-Oct-2018	10-Oct-2018	16			
EP132B: Polynuclear Aromatic Hydrocarbo							
Soil Glass Jar - Unpreserved							
B1 02 (T2),	B1 02 (T3)	30-Oct-2018	10-Oct-2018	20			

Page : 4 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: * = Holding time breach : \(\square = \text{Within holding time.} \)

viatrix: SOIL					Evaluation	i: * = Holding time	breach; ✓ = with	n nolding tin
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-	.110°C)							
Soil Glass Jar - Unpreserved (EA055)								
SB_02 (T1),	SB_02 (T2),	24-Sep-2018				04-Oct-2018	08-Oct-2018	✓
SB_02 (T3),	SB_16,							
SB_40,	SB_45,							
SB_50,	SB_52,							
SB_58,	SB_79,							
D1								
Soil Glass Jar - Unpreserved (EA055)								
TB_02,	TB_05 (T1),	25-Sep-2018				04-Oct-2018	09-Oct-2018	✓
TB_05 (T2),	TB_05 (T3),							
TB_12,	TB_18,							
TB_26,	TB_29,							
D5,	H-3							
Soil Glass Jar - Unpreserved (EA055)								
B1_02 (T1),	B1_07,	26-Sep-2018				04-Oct-2018	10-Oct-2018	✓
B3_14,	B4_01,							
B5_08,	B5_10,							
D3								
Soil Glass Jar - Unpreserved (EA055)								
B1_02 (T2),	B1_02 (T3)	26-Sep-2018				25-Oct-2018	10-Oct-2018	x
Soil Glass Jar - Unpreserved (EA055)								
REF_01,	REF_02,	27-Sep-2018				04-Oct-2018	11-Oct-2018	✓
REF_03,	SG_01,							
SG_02,	SG_03							

Page : 5 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA150: Particle Sizing								
Snap Lock Bag (EA150H)								
SB_02 (T1),	SB_02 (T2),	24-Sep-2018				16-Oct-2018	23-Mar-2019	✓
SB_02 (T3),	SB_16,							
SB_45,	SB_52,							
SB_79,	D1							
Snap Lock Bag (EA150H)								
TB_02,	TB_18,	25-Sep-2018				16-Oct-2018	24-Mar-2019	✓
TB_29,	D5							
Snap Lock Bag (EA150H)								
B1_02 (T2),	B1_02 (T3)	26-Sep-2018				05-Nov-2018	25-Mar-2019	✓
Snap Lock Bag (EA150H)								
B1_02 (T1),	B3_14,	26-Sep-2018				16-Oct-2018	25-Mar-2019	✓
B4_01,	B5_10,							
D3								
Snap Lock Bag (EA150H)								
REF_01,	REF_02,	27-Sep-2018				16-Oct-2018	26-Mar-2019	✓
SG_01,	SG_02,							
SG_03								
EA150: Soil Classification based on Particl	le Size							
Snap Lock Bag (EA150H)								
SB_02 (T1),	SB_02 (T2),	24-Sep-2018				16-Oct-2018	23-Mar-2019	✓
SB_02 (T3),	SB_16,							
SB_45,	SB_52,							
SB_79,	D1							
Snap Lock Bag (EA150H)								
TB_02,	TB_18,	25-Sep-2018				16-Oct-2018	24-Mar-2019	✓
TB_29,	D5							
Snap Lock Bag (EA150H)								
B1_02 (T2),	B1_02 (T3)	26-Sep-2018				05-Nov-2018	25-Mar-2019	✓
Snap Lock Bag (EA150H)								
B1_02 (T1),	B3_14,	26-Sep-2018				16-Oct-2018	25-Mar-2019	✓
B4_01,	B5_10,							
D3								
Snap Lock Bag (EA150H)								
REF_01,	REF_02,	27-Sep-2018				16-Oct-2018	26-Mar-2019	✓
SG_01,	SG_02,							
SG_03								

Page : 6 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time
Method		Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA151: Settleability 10%								
Snap Lock Bag (EA151-10)								
SB_02 (T1),	SB_02 (T2),	24-Sep-2018				16-Oct-2018	23-Mar-2019	✓
SB_02 (T3),	SB_16,							
SB_45,	SB_52,							
SB_79,	D1							
Snap Lock Bag (EA151-10)								
TB_02,	TB_18,	25-Sep-2018				16-Oct-2018	24-Mar-2019	✓
TB_29,	D5							
Snap Lock Bag (EA151-10)								
B1_02 (T2),	B1_02 (T3)	26-Sep-2018				01-Nov-2018	25-Mar-2019	✓
Snap Lock Bag (EA151-10)	D0 44	00.0				40.0-4.0040	05 Mar 2040	
B1_02 (T1),	B3_14,	26-Sep-2018				16-Oct-2018	25-Mar-2019	✓
B4_01,	B5_10,							
D3								
Snap Lock Bag (EA151-10)	DEE 00	07.00040				40.0-4.0040	00 Mar 2010	
REF_01,	REF_02,	27-Sep-2018				16-Oct-2018	26-Mar-2019	✓
SG_01,	SG_02,							
SG_03								
EA151: Settleability 20%								
Snap Lock Bag (EA151-20)								
SB_02 (T1),	SB_02 (T2),	24-Sep-2018				16-Oct-2018	23-Mar-2019	✓
SB_02 (T3),	SB_16,							
SB_45,	SB_52,							
SB_79,	D1							
Snap Lock Bag (EA151-20)								
TB_02,	TB_18,	25-Sep-2018				16-Oct-2018	24-Mar-2019	✓
TB_29,	D5							
Snap Lock Bag (EA151-20)							05.14- 00.46	
B1_02 (T2),	B1_02 (T3)	26-Sep-2018				01-Nov-2018	25-Mar-2019	✓
Snap Lock Bag (EA151-20)	D0 44	20.0 2042				46 0-4 2040	25 Mar 2010	
B1_02 (T1),	B3_14,	26-Sep-2018				16-Oct-2018	25-Mar-2019	✓
B4_01,	B5_10,							
D3								
Snap Lock Bag (EA151-20)	DEE 00	27.0 2042				46 0-4 2040	26-Mar-2019	
REF_01,	REF_02,	27-Sep-2018				16-Oct-2018	20-IVIAI-2019	✓
SG_01,	SG_02,							
SG_03								

Page : 7 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding tin
Method		Sample Date	E.	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA152: Soil Particle Density								
Snap Lock Bag (EA152)								
SB_02 (T1),	SB_02 (T2),	24-Sep-2018				16-Oct-2018	23-Mar-2019	✓
SB_02 (T3),	SB_45,							
SB_79								
Snap Lock Bag (EA152)		25 Sam 2049				46 0-4 2049	24 Mar 2010	
TB_18		25-Sep-2018				16-Oct-2018	24-Mar-2019	✓
Snap Lock Bag (EA152) B1_02 (T2),	B1_02 (T3)	26-Sep-2018				05-Nov-2018	25-Mar-2019	1
Snap Lock Bag (EA152)	B1_02 (13)	25-50-2010				00-1107-2010	20 Wai 2010	· ·
REF_01,	REF_02,	27-Sep-2018				16-Oct-2018	26-Mar-2019	1
SG 02,	SG_03							Y
	55_55							
EG020-SD: Total Metals in Sediments by ICPMS Soil Glass Jar - Unpreserved (EG020-SD)				<u> </u>		I	I	
SB_02 (T1),	SB_02 (T2),	24-Sep-2018	09-Oct-2018	23-Mar-2019	✓	10-Oct-2018	23-Mar-2019	1
SB_02 (11), SB_02 (T3),	SB_16,	24 30p 2010	00 001 2010	20 20 .0		10 001 2010	20 20 .0	Y
SB 40,	SB_10, SB_45,							
SB_50,	SB_52,							
SB_58,	SB_79,							
D1	3b_19,							
Soil Glass Jar - Unpreserved (EG020-SD)								
TB_02,	TB 05 (T1),	25-Sep-2018	08-Oct-2018	24-Mar-2019	✓	11-Oct-2018	24-Mar-2019	1
TB 05 (T2),	TB 05 (T3),				_			Y
TB_12,	TB_18,							
TB_26,	TB_29,							
D5	15_23,							
Soil Glass Jar - Unpreserved (EG020-SD)								
H-3		25-Sep-2018	09-Oct-2018	24-Mar-2019	1	10-Oct-2018	24-Mar-2019	1
Soil Glass Jar - Unpreserved (EG020-SD)					_			_
B1_02 (T1),	B1_07,	26-Sep-2018	08-Oct-2018	25-Mar-2019	✓	11-Oct-2018	25-Mar-2019	1
B3_14,	B4_01,							
B5_08,	B5_10,							
D3								
Soil Glass Jar - Unpreserved (EG020-SD)								
B1_02 (T2),	B1_02 (T3)	26-Sep-2018	26-Oct-2018	25-Mar-2019	✓	29-Oct-2018	25-Mar-2019	✓
Soil Glass Jar - Unpreserved (EG020-SD)								
REF_01,	REF_02	27-Sep-2018	08-Oct-2018	26-Mar-2019	✓	11-Oct-2018	26-Mar-2019	✓
Soil Glass Jar - Unpreserved (EG020-SD)				00.14				
REF_03,	SG_01,	27-Sep-2018	09-Oct-2018	26-Mar-2019	✓	10-Oct-2018	26-Mar-2019	✓
SG_02,	SG_03							

Page : 8 of 17

SG_02,

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

SG_03

Matrix: SOIL Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EG035T: Total Recoverable Mercury by FIMS Soil Glass Jar - Unpreserved (EG035T-LL) 24-Sep-2018 09-Oct-2018 22-Oct-2018 10-Oct-2018 22-Oct-2018 SB_02 (T1), SB 02 (T2), SB 02 (T3), SB_16, SB 40, SB_45, SB 50. SB 52, SB 58, SB_79, D1 Soil Glass Jar - Unpreserved (EG035T-LL) 25-Sep-2018 08-Oct-2018 23-Oct-2018 11-Oct-2018 23-Oct-2018 TB_02, TB_05 (T1), TB 05 (T2), TB 05 (T3), TB 12, TB 18, TB 26, TB 29, Soil Glass Jar - Unpreserved (EG035T-LL) 25-Sep-2018 09-Oct-2018 23-Oct-2018 10-Oct-2018 23-Oct-2018 1 Soil Glass Jar - Unpreserved (EG035T-LL) B1 02 (T1), 26-Sep-2018 08-Oct-2018 24-Oct-2018 11-Oct-2018 24-Oct-2018 B1 07, 1 B3_14, B4_01, B5_08, B5_10, Soil Glass Jar - Unpreserved (EG035T-LL) 26-Sep-2018 26-Oct-2018 24-Oct-2018 29-Oct-2018 24-Oct-2018 B1_02 (T2), B1_02 (T3) Soil Glass Jar - Unpreserved (EG035T-LL) REF 01, REF_02 27-Sep-2018 08-Oct-2018 25-Oct-2018 1 11-Oct-2018 25-Oct-2018 Soil Glass Jar - Unpreserved (EG035T-LL) REF_03, 27-Sep-2018 09-Oct-2018 25-Oct-2018 10-Oct-2018 25-Oct-2018 SG_01,

Page : 9 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP003: Total Organic Carbon (TOC) in S	oil							
Pulp Bag (EP003)								
SB_02 (T1),	SB_02 (T2),	24-Sep-2018	09-Oct-2018	22-Oct-2018	✓	09-Oct-2018	22-Oct-2018	✓
SB_02 (T3),	SB_16,							
SB_40,	SB_45,							
SB_50,	SB_52,							
SB_58,	SB_79,							
D1								
Pulp Bag (EP003)								
TB_02,	TB_05 (T1),	25-Sep-2018	09-Oct-2018	23-Oct-2018	✓	09-Oct-2018	23-Oct-2018	✓
TB_05 (T2),	TB_05 (T3),							
TB 12,	TB_18,							
TB_26,	TB_29,							
D5,	H-3							
Pulp Bag (EP003)	.							
B1_02 (T2),	B1_02 (T3)	26-Sep-2018	01-Nov-2018	24-Oct-2018	se.	01-Nov-2018	24-Oct-2018	×
Pulp Bag (EP003)	_							•
B1_02 (T1),	B1_07,	26-Sep-2018	09-Oct-2018	24-Oct-2018	✓	09-Oct-2018	24-Oct-2018	✓
B3_14,	B4_01,							,
B5_08,	B5_10,							
D3								
Pulp Bag (EP003)								
REF_01,	REF_02,	27-Sep-2018	09-Oct-2018	25-Oct-2018	1	09-Oct-2018	25-Oct-2018	1
REF_03,	SG_01,				_			*
SG_02,	SG_03							
EP080/071: Total Recoverable Hydrocart	oons - NEPM 2013 Fractions		I		l .		I	
Soil Glass Jar - Unpreserved (EP071-SD)	TD 05 (T4)	25-Sep-2018	05-Oct-2018	09-Oct-2018		10-Oct-2018	14-Nov-2018	
TB_02,	TB_05 (T1),	25-Sep-2016	05-001-2016	09-001-2016	✓	10-001-2016	14-1100-2010	✓
TB_05 (T2),	TB_05 (T3),							
TB_12,	TB_18,							
TB_26,	TB_29,							
D5								
Soil Glass Jar - Unpreserved (EP071-SD)				10.0.1.0010			44.11 0040	
B1_02 (T1),	B1_07,	26-Sep-2018	05-Oct-2018	10-Oct-2018	✓	10-Oct-2018	14-Nov-2018	✓
B3_14,	B4_01,							
B5_08,	B5_10,							
D3								
Soil Glass Jar - Unpreserved (EP071-SD)								
B1_02 (T2),	B1_02 (T3)	26-Sep-2018	26-Oct-2018	10-Oct-2018	32	29-Oct-2018	05-Dec-2018	✓
Soil Glass Jar - Unpreserved (EP071-SD)								
REF_01,	REF_02,	27-Sep-2018	05-Oct-2018	11-Oct-2018	✓	10-Oct-2018	14-Nov-2018	✓
REF_03,	SG_01,							
SG_02,	SG_03							

Page : 10 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = With	n holding tin
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080-SD / EP071-SD: Total Petroleum Hydr	ocarbons							
Soil Glass Jar - Unpreserved (EP080-SD)								
TB_02,	TB_05 (T1),	25-Sep-2018	04-Oct-2018	09-Oct-2018	✓	08-Oct-2018	09-Oct-2018	✓
TB_05 (T2),	TB_05 (T3),							
TB_12,	TB_18,							
TB_26,	TB_29,							
D5								
Soil Glass Jar - Unpreserved (EP071-SD)								
TB_02,	TB_05 (T1),	25-Sep-2018	05-Oct-2018	09-Oct-2018	✓	10-Oct-2018	14-Nov-2018	✓
TB_05 (T2),	TB_05 (T3),							
TB_12,	TB_18,							
TB_26,	TB_29,							
D5								
Soil Glass Jar - Unpreserved (EP080-SD)								
B1_02 (T1),	B1_07,	26-Sep-2018	04-Oct-2018	10-Oct-2018	✓	08-Oct-2018	10-Oct-2018	✓
B3_14,	B4_01,							
B5_08,	B5_10,							
D3								
Soil Glass Jar - Unpreserved (EP071-SD)								
B1_02 (T1),	B1_07,	26-Sep-2018	05-Oct-2018	10-Oct-2018	✓	10-Oct-2018	14-Nov-2018	✓
B3_14,	B4_01,							
B5_08,	B5_10,							
D3								
Soil Glass Jar - Unpreserved (EP080-SD)								
B1_02 (T2)		26-Sep-2018	26-Oct-2018	10-Oct-2018	<u>k</u>	26-Oct-2018	10-Oct-2018	x
Soil Glass Jar - Unpreserved (EP071-SD)								
B1_02 (T2)		26-Sep-2018	26-Oct-2018	10-Oct-2018	*	29-Oct-2018	05-Dec-2018	✓
Soil Glass Jar - Unpreserved (EP080-SD)				10.0.1.0010			40.0.4.0040	
B1_02 (T3)		26-Sep-2018	26-Oct-2018	10-Oct-2018	*	26-Oct-2018	10-Oct-2018	×
Soil Glass Jar - Unpreserved (EP071-SD)		26 San 2049	26-Oct-2018	10-Oct-2018		29-Oct-2018	05-Dec-2018	
B1_02 (T3)		26-Sep-2018	26-001-2016	10-001-2016	*	29-001-2016	05-Dec-2016	✓
Soil Glass Jar - Unpreserved (EP080-SD)	REF_02,	27-Sep-2018	04-Oct-2018	11-Oct-2018	1	08-Oct-2018	11-Oct-2018	
REF_01,		27-Зер-2010	04-00t-2010	11-001-2010	•	00-001-2010	11-001-2010	✓
REF_03,	SG_01,							
SG_02,	SG_03							
Soil Glass Jar - Unpreserved (EP071-SD)	REF 02,	27-Sep-2018	05-Oct-2018	11-Oct-2018	1	10-Oct-2018	14-Nov-2018	1
REF_01,	— 1	27-3ep-2010	03-001-2010	11-001-2010	✓	10-001-2010	1-7-1404-2010	v
REF_03,	SG_01,							
SG_02,	SG_03		I			I		

Page : 11 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080-SD / EP071-SD: Total Recoverable Hydrod	carbons							
Soil Glass Jar - Unpreserved (EP080-SD)								
TB_02,	TB_05 (T1),	25-Sep-2018	04-Oct-2018	09-Oct-2018	✓	08-Oct-2018	09-Oct-2018	✓
TB_05 (T2),	TB_05 (T3),							
TB_12,	TB_18,							
TB_26,	TB_29,							
D5								
Soil Glass Jar - Unpreserved (EP080-SD)								
B1_02 (T1),	B1_07,	26-Sep-2018	04-Oct-2018	10-Oct-2018	✓	08-Oct-2018	10-Oct-2018	✓
B3_14,	B4_01,							
B5_08,	B5_10,							
D3								
Soil Glass Jar - Unpreserved (EP080-SD)				10.0.1.0010			40.0.4.0040	
B1_02 (T2),	B1_02 (T3)	26-Sep-2018	26-Oct-2018	10-Oct-2018	<u>*</u>	26-Oct-2018	10-Oct-2018	×
Soil Glass Jar - Unpreserved (EP080-SD)	DEE 00	27-Sep-2018	04-Oct-2018	11-Oct-2018		08-Oct-2018	11-Oct-2018	
REF_01,	REF_02,	27-5ер-2016	04-OCI-2016	11-OCI-2016	✓	06-OCI-2016	11-001-2016	✓
REF_03,	SG_01,							
SG_02,	SG_03							
EP080-SD: BTEXN								
Soil Glass Jar - Unpreserved (EP080-SD)		05.00040	04.0.4.0040	09-Oct-2018		00.0.1.0010	09-Oct-2018	
TB_02,	TB_05 (T1),	25-Sep-2018	04-Oct-2018	09-Oct-2018	✓	08-Oct-2018	09-Oct-2018	✓
TB_05 (T2),	TB_05 (T3),							
TB_12,	TB_18,							
TB_26,	TB_29,							
D5								
Soil Glass Jar - Unpreserved (EP080-SD)	D4 07	26-Sep-2018	04 0-4 2049	10-Oct-2018		00 0-4 2040	10-Oct-2018	
B1_02 (T1),	B1_07,	26-5ер-2016	04-Oct-2018	10-061-2016	✓	08-Oct-2018	10-001-2016	✓
B3_14,	B4_01,							
B5_08,	B5_10,							
D3								
Soil Glass Jar - Unpreserved (EP080-SD) B1 02 (T2),	P4 02 (T2)	26-Sep-2018	26-Oct-2018	10-Oct-2018	4.	26-Oct-2018	10-Oct-2018	
Soil Glass Jar - Unpreserved (EP080-SD)	B1_02 (T3)	20-3eμ-2010	20-001-2010	10-001-2010	*	20-001-2010	10-001-2010	*
REF_01,	REF_02,	27-Sep-2018	04-Oct-2018	11-Oct-2018	√	08-Oct-2018	11-Oct-2018	✓
REF_03,	SG_01,				_			•
SG_02,	SG_03							
00_02,	36_03							

Page : 12 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	e breach ; ✓ = Within holdir		
Method		Sample Date	Ex	traction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP090: Organotin Compounds									
Soil Glass Jar - Unpreserved (EP090)									
SB_02 (T1),	SB_02 (T2),	24-Sep-2018	05-Oct-2018	08-Oct-2018	✓	09-Oct-2018	14-Nov-2018	✓	
SB_02 (T3),	SB_16,								
SB_40,	SB_45,								
SB_50,	SB_52,								
SB_58,	SB_79,								
D1	-								
Soil Glass Jar - Unpreserved (EP090)									
H-3		25-Sep-2018	08-Oct-2018	09-Oct-2018	✓	10-Oct-2018	17-Nov-2018	✓	
Soil Glass Jar - Unpreserved (EP090)									
TB_02,	TB_05 (T1),	25-Sep-2018	08-Oct-2018	09-Oct-2018	✓	11-Oct-2018	17-Nov-2018	✓	
TB_05 (T2),	TB_05 (T3),								
TB_12,	TB_18,								
TB_26,	TB_29,								
D5									
Soil Glass Jar - Unpreserved (EP090)									
B1_02 (T1),	B1_07,	26-Sep-2018	08-Oct-2018	10-Oct-2018	✓	11-Oct-2018	17-Nov-2018	✓	
B3_14,	B4_01,								
B5_08,	B5_10,								
D3									
Soil Glass Jar - Unpreserved (EP090)									
B1_02 (T2),	B1_02 (T3)	26-Sep-2018	26-Oct-2018	10-Oct-2018	¥	30-Oct-2018	05-Dec-2018	✓	
Soil Glass Jar - Unpreserved (EP090)									
REF_03,	SG_01,	27-Sep-2018	08-Oct-2018	11-Oct-2018	✓	10-Oct-2018	17-Nov-2018	✓	
SG_02,	SG_03								
Soil Glass Jar - Unpreserved (EP090)									
REF_01,	REF_02	27-Sep-2018	08-Oct-2018	11-Oct-2018	√	11-Oct-2018	17-Nov-2018	✓	
EP131A: Organochlorine Pesticides									
Soil Glass Jar - Unpreserved (EP131A)									
TB_02,	TB_05 (T1),	25-Sep-2018	05-Oct-2018	09-Oct-2018	✓	11-Oct-2018	14-Nov-2018	✓	
TB_05 (T2),	TB_05 (T3),								
TB_12,	TB_18,								
TB_26,	TB_29,								
D5									

Page : 13 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding tim
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP132B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP132B-SD)								
TB_02,	TB_05 (T1),	25-Sep-2018	05-Oct-2018	09-Oct-2018	✓	08-Oct-2018	14-Nov-2018	✓
TB_05 (T2),	TB_05 (T3),							
TB_12,	TB_18,							
TB_26,	TB_29,							
D5	_							
Soil Glass Jar - Unpreserved (EP132B-SD)								
B1_02 (T1),	B1_07,	26-Sep-2018	05-Oct-2018	10-Oct-2018	✓	08-Oct-2018	14-Nov-2018	/
B3_14,	B4_01,							
B5_08,	B5_10,							
D3	20_10,							
Soil Glass Jar - Unpreserved (EP132B-SD)								
B1 02 (T2),	B1 02 (T3)	26-Sep-2018	30-Oct-2018	10-Oct-2018	<u>k</u>	01-Nov-2018	09-Dec-2018	1
Soil Glass Jar - Unpreserved (EP132B-SD)	B1_02 (10)	20 00\$ 20.0	00 001 2010	10 001 2010		01 1101 2010	00 200 2010	
SG 02,	SG_03	27-Sep-2018	05-Oct-2018	11-Oct-2018	1	05-Oct-2018	14-Nov-2018	1
Soil Glass Jar - Unpreserved (EP132B-SD)	00_00		00 001 2010	11 001 2010		00 00. 20.0		
REF_01,	REF_02,	27-Sep-2018	05-Oct-2018	11-Oct-2018	1	08-Oct-2018	14-Nov-2018	✓
REF 03,	SG 01				_ •	** *********		Y
Matrix: WATER	00_01				Evaluation	v = Holding time	breach ; ✓ = Withi	in holding tim
Method		Sample Date	F ₁	traction / Preparation	Lvaluatioi		Analysis	in notaling tim
Container / Client Sample ID(s)		Sample Date	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Natural (EG020A-T)								
Rinsate 1		24-Sep-2018	09-Oct-2018	23-Mar-2019	1	09-Oct-2018	23-Mar-2019	1
Clear Plastic Bottle - Natural (EG020A-T)								
Rinsate 2		25-Sep-2018	09-Oct-2018	24-Mar-2019	1	09-Oct-2018	24-Mar-2019	/
Clear Plastic Bottle - Natural (EG020A-T)								
Rinsate 3		26-Sep-2018	09-Oct-2018	25-Mar-2019	1	09-Oct-2018	25-Mar-2019	✓
Clear Plastic Bottle - Natural (EG020A-T)								
Rinsate 4		27-Sep-2018	09-Oct-2018	26-Mar-2019	✓	09-Oct-2018	26-Mar-2019	✓
Tilloute 4		2. Cop 20.0						-
		27 000 2010						
EG035T: Total Recoverable Mercury by FIMS		27 000 2010						
EG035T: Total Recoverable Mercury by FIMS		24-Sep-2018				10-Oct-2018	22-Oct-2018	✓
EG035T: Total Recoverable Mercury by FIMS Clear Plastic Bottle - Natural (EG035T) Rinsate 1						10-Oct-2018	22-Oct-2018	√
EG035T: Total Recoverable Mercury by FIMS Clear Plastic Bottle - Natural (EG035T) Rinsate 1						10-Oct-2018	22-Oct-2018 23-Oct-2018	✓ ✓
EG035T: Total Recoverable Mercury by FIMS Clear Plastic Bottle - Natural (EG035T) Rinsate 1 Clear Plastic Bottle - Natural (EG035T) Rinsate 2		24-Sep-2018						
EG035T: Total Recoverable Mercury by FIMS Clear Plastic Bottle - Natural (EG035T) Rinsate 1 Clear Plastic Bottle - Natural (EG035T)		24-Sep-2018						
EG035T: Total Recoverable Mercury by FIMS Clear Plastic Bottle - Natural (EG035T) Rinsate 1 Clear Plastic Bottle - Natural (EG035T) Rinsate 2 Clear Plastic Bottle - Natural (EG035T)		24-Sep-2018 25-Sep-2018				10-Oct-2018	23-Oct-2018	✓

Page : 14 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing or breaches is provided in the Summary of Outliers.

Matrix: **SOIL**Evaluation: ★ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Wallix. SOIL				Lvaluatio	ii. 🕶 – Quality Co	illioi ilequelicy	not within specification, • - Quality Control nequency within specificati
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	6	39	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organochlorine Pesticides (Ultra-trace)	EP131A	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organotin Analysis	EP090	6	36	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAHs in Sediments by GCMS(SIM)	EP132B-SD	4	24	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS (Low Level)	EG035T-LL	6	36	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals in Sediments by ICPMS	EG020-SD	6	36	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP003	6	51	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
ГРН - Semivolatile Fraction	EP071-SD	4	24	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX in Sediments	EP080-SD	4	24	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Organochlorine Pesticides (Ultra-trace)	EP131A	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organotin Analysis	EP090	4	36	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAHs in Sediments by GCMS(SIM)	EP132B-SD	3	24	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS (Low Level)	EG035T-LL	4	36	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals in Sediments by ICPMS	EG020-SD	4	36	11.11	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP003	3	51	5.88	5.00	√	NEPM 2013 B3 & ALS QC Standard
TPH - Semivolatile Fraction	EP071-SD	3	24	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX in Sediments	EP080-SD	3	24	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Organochlorine Pesticides (Ultra-trace)	EP131A	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organotin Analysis	EP090	4	36	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAHs in Sediments by GCMS(SIM)	EP132B-SD	3	24	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS (Low Level)	EG035T-LL	4	36	11.11	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Metals in Sediments by ICPMS	EG020-SD	4	36	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Fotal Organic Carbon	EP003	3	51	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
TPH - Semivolatile Fraction	EP071-SD	3	24	12.50	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX in Sediments	EP080-SD	3	24	12.50	5.00	√	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)						-	
Organochlorine Pesticides (Ultra-trace)	EP131A	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organotin Analysis	EP090	4	36	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAHs in Sediments by GCMS(SIM)	EP132B-SD	3	24	12.50	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Fotal Mercury by FIMS (Low Level)	EG035T-LL	4	36	11.11	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Fotal Metals in Sediments by ICPMS	EG020-SD	4	36	11.11	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
TPH - Semivolatile Fraction	EP071-SD	3	24	12.50	5.00		NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX in Sediments	EP080-SD	3	24	12.50	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard

Page : 15 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: WATER				Evaluation	n: 🗴 = Quality Co	ntrol frequency r	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Total Mercury by FIMS	EG035T	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Total Mercury by FIMS	EG035T	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Total Mercury by FIMS	EG035T	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Total Mercury by FIMS	EG035T	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 16 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Settleability 10%	* EA151-10	SOIL	In house: Determination of the settling rate of sediment or sludge in 10% solids slurries in seawater
Settleability 20%	* EA151-20	SOIL	In house: Determination of the settling rate of sediment or sludge in 20% solids slurries in seawater
Soil Particle Density	* EA152	SOIL	Soil Particle Density by AS 1289.3.5.1-2006 : Methods of testing soils for engineering purposes - Soil
			classification tests - Determination of the soil particle density of a soil - Standard method
Gross Alpha and Beta activity in solids	EA250	SOIL	In house: Referenced to ISO 9697 / CSN 757611. Determination of Gross Alpha and Beta activity in soil and
			sediment by Thick Source method. An appropriate mass of sample is dried and pulverised prior to direct activity
			counting. (If required, Potassium may be determined separately and results corrected accordingly for 40K.)
			Analysis is performed by ALS (Czech Republic) who hold technical accreditation #1163 for Gross alpha and beta
			activity under CAI. CAI are a European accreditation body, equivalent to NATA in Australia and recognised
			internationally by NATA under ILAC.
Total Metals in Sediments by ICPMS	EG020-SD	SOIL	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes
			a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.
Total Mercury by FIMS (Low Level)	EG035T-LL	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)
			FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an
			appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then
			purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This
Total Companie Code ou		0011	method is compliant with NEPM (2013) Schedule B(3)
Total Organic Carbon	EP003	SOIL	In house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then
			combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as
TPH - Semivolatile Fraction	ED074 OD	COII	CO2) is automatically measured by infra-red detector.
TPH - Semivolatile Fraction	EP071-SD	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/FID and quantification
			is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013)
TRH Volatiles/BTEX in Sediments	EP080-SD	SOIL	Schedule B(3) (Method 504)
TRH Volatiles/BTEX III Sediments	EP000-5D	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS.
Organotin Analysis	EP090	SOIL	Quantification is by comparison against an established 5 point calibration curve.
Organoun Analysis	EF090	JOIL	In house: Referenced to USEPA SW 846 - 8270D Prepared sample extracts are analysed by GC/MS coupled
Organochlorine Pesticides (Ultra-trace)	EP131A	SOIL	with high volume injection, and quanitified against an established calibration curve. In house: Referenced to USEPA Method 3640 (GPC cleanup),3620 (Florisil), 8081/8082 (GC/µECD/µECD) This
Organiounionne i esticides (Onia-dace)	LFISIA	JOIL	technique is compliant with NEPM (2013) Schedule B(3)
PAHs in Sediments by GCMS(SIM)	EP132B-SD	SOIL	In house: Referenced to USEPA 8270D GCMS Capillary column, SIM mode using large volume programmed
174 15 111 Ocuments by Golylo(Gilvi)	LF IJZD-JU	JOIL	temperature vaporisation injection.
			temperature vaponsation injection.

Page : 17 of 17

Work Order : EB1823470 Amendment 3
Client : ADVISIAN PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Drying only	EN020D	SOIL	In house
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Organic Matter	EP004-PR	SOIL	In house: Referenced to AS1289.4.1.1 - 1997. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3) (Method 105)
Dry and Pulverise (up to 100g)	GEO30	SOIL	#
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids/ Sample Cleanup	ORG17A-UTP	SOIL	In house: Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. Samples are extracted, concentrated (by KD) and exchanged into an appropriate solvent for GPC and florisil cleanup as required.
Tumbler Extraction of Solids for LVI (Non-concentrating)	ORG17D	SOIL	In house: 10g of sample, Na2SO4 and surrogate are extracted with 50mL 1:1 DCM/Acetone by end over end tumbling. An aliquot is concentrated by nitrogen blowdown to a reduced volume for analysis if required.
Organotin Sample Preparation	ORG35	SOIL	In house: 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB1823470

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia

4053

Intact.

 Telephone
 : --- Telephone
 : +61-7-3243 7222

 Facsimile
 : --- Facsimile
 : +61-7-3243 7218

Project : 301001.02018 - Port of Mackay Page : 1 of 7

Sediment Sampling

 Order number
 :
 Quote number
 : EB2018ADVISI0003 (BN/185/18)

 C-O-C number
 : -- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Sampler : NICHOLAS BAINTON

Dates

Site

Date

Delivery Details

Mode of Delivery : Carrier Security Seal

BRISBANE QLD, AUSTRALIA 4000

No. of coolers/boxes : 6 Temperature : 1.6<->4.8°C - Ice present

Receipt Detail : MEDIUM ESKY No. of samples received / analysed : 58 / 42

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please be advised, due to limited sample volume submitted, PSD analysis has been removed from "REF 03" & "NA 02".
- 16/10/18: SRN has been resent to acknowledge that PFAS has been added to the requested samples. For any further information regarding these adjustments please contact client services at ALSEnviro.Brisbane@alsglobal.com.
- 16/10/18: SRN has been resent to acknowledge that PFAS has been removed and logged under EB1824883. For any further information regarding these adjustments please contact client services at ALSEnviro.Brisbane@alsglobal.com.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Particle Sizing analysis will be conducted by ALS Environmental, Newcastle, NATA accreditation no. 825, Site No. 1656.
- Specialty Organics analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.

: 16-Oct-2018 Issue Date

Page

: 2 of 7 : EB1823470 Amendment 0 Work Order Client : ADVISIAN PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
Total Mercury by FIMS : EG0351		
Rinsate 1	- Clear Plastic Bottle - Natural	 Clear Plastic Bottle - Nitric Acid; Unfiltered
Rinsate 2	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered
Rinsate 3	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered
Rinsate 4	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered
Total Metals by ICP-MS - Suite A	A : EG020A-T	
Rinsate 1	- Clear Plastic Bottle - Natural	 Clear Plastic Bottle - Nitric Acid; Unfiltered
Rinsate 2	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered
Rinsate 3	- Clear Plastic Bottle - Natural	 Clear Plastic Bottle - Nitric Acid; Unfiltered
Rinsate 4	- Clear Plastic Bottle - Natural	 Clear Plastic Bottle - Nitric Acid; Unfiltered

Summary of S	Sample(s) and R	equested Analysis							
process necessatasks. Packages as the determinatasks, that are including no sampling	ry for the execution may contain ad ation of moisture uded in the package. Itime is provided, the date of sampling date wi	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will be assumed by the ckets without a time	SOIL - EA055-103 Moisture Content	SOIL - EA150H Particle Size Analysis by Hydrometer: AS1289	SOIL - EA151-10 Settleability 10%	SOIL - EA151-20 Settleability 20%	SOIL - EA152 Soil Particle Density for Hydrometer Analysis	SOIL - EG035T-LL Total Mercury by FIMS - Low Level (SOLID)	SOIL - EP090 (solids) Organotins
ID EB1823470-001	date / time 24-Sep-2018 00:00	SB_02 (T1)	S ✓	S 4 Pa S	\ \sqrt{\sqrt{\gamma}}	\(\sigma\) \(\sigma\)	\(\sigma\) \(\sigma\)	02 €	S o
EB1823470-001	24-Sep-2018 00:00	SB 02 (T2)	▼	∀	∀	▼	∀	∀	▼
EB1823470-003	24-Sep-2018 00:00	SB_02 (T3)	1	· ✓	· ✓	√	√	· ✓	V
EB1823470-004	24-Sep-2018 00:00	SB_16	1	1	1	·	1	· ✓	<i>'</i>
EB1823470-005	24-Sep-2018 00:00	SB_40	1		_			1	1
EB1823470-006	24-Sep-2018 00:00	SB_45	1	1	1	1	1	✓	1
EB1823470-007	24-Sep-2018 00:00	SB_50	1					1	1
EB1823470-008	24-Sep-2018 00:00	SB_52	1	1	1	✓	1	1	1
EB1823470-009	24-Sep-2018 00:00	SB_58	1					1	1
EB1823470-010	24-Sep-2018 00:00	SB_79	1	1	1	1	1	✓	1
EB1823470-011	24-Sep-2018 00:00	D1	1	1	1	✓	1	✓	1
EB1823470-013	26-Sep-2018 00:00	B1_02 (T1)	1	✓	1	✓	1	✓	1
EB1823470-016	26-Sep-2018 00:00	B1_07	1					✓	1
EB1823470-017	26-Sep-2018 00:00	B3_14	1	✓	1	✓	1	✓	✓
EB1823470-018	26-Sep-2018 00:00	B4_01	1	✓	1	1	1	✓	1
EB1823470-019	26-Sep-2018 00:00	B5_08	✓					✓	✓
EB1823470-020	26-Sep-2018 00:00	B5_10	✓	✓	✓	✓	✓	✓	1
EB1823470-021	26-Sep-2018 00:00	D3	✓	✓	✓	✓	✓	✓	✓
EB1823470-023	25-Sep-2018 00:00	TB_02	✓	✓	✓	✓	✓	✓	✓
EB1823470-024	25-Sep-2018 00:00	TB_05 (T1)	✓					✓	✓

Issue Date : 16-Oct-2018 Page

3 of 7 EB1823470 Amendment 0 Work Order Client : ADVISIAN PTY LTD

			SOIL - EA055-103 Moisture Content	SOIL - EA150H Particle Size Analysis by Hydrometer: AS1289	SOIL - EA151-10 Settleability 10%	SOIL - EA151-20 Settleability 20%	SOIL - EA152 Soil Particle Density for Hydrometer Analysis	SOIL - EG035T-LL Total Mercury by FIMS - Low Level (SOLID)	SOIL - EP090 (solids) Organotins
EB1823470-025	25-Sep-2018 00:00	TB_05 (T2)	✓					✓	✓
EB1823470-026	25-Sep-2018 00:00	TB_05 (T3)	✓					✓	✓
EB1823470-027	25-Sep-2018 00:00	TB_12	✓					✓	✓
EB1823470-028	25-Sep-2018 00:00	TB_18	1	✓	✓	1	1	✓	✓
EB1823470-029	25-Sep-2018 00:00	TB_26	✓					1	✓
EB1823470-030	25-Sep-2018 00:00	TB_29	1	1	1	1	1	1	1
EB1823470-031	25-Sep-2018 00:00	D5	1	1	1	1	1	1	1
EB1823470-033	27-Sep-2018 00:00	REF 01	1	1	1	1	1	1	1
EB1823470-034	27-Sep-2018 00:00	REF_02	1	√	√	1	√	√	1
EB1823470-035	27-Sep-2018 00:00	REF_03	· /	•	•	, ·	<u> </u>	√	·
EB1823470-036	27-Sep-2018 00:00	SG_01	· /	✓	✓	1	✓	√	<i>'</i>
EB1823470-037	27-Sep-2018 00:00	SG_02	1	√	√	· ✓	√	√	·
		_	V	∀	√	√	√	√	V
EB1823470-038	27-Sep-2018 00:00	SG_03		٧	٧	٧	V		
EB1823470-039	25-Sep-2018 00:00	H-3	√		1			1	✓
	27-Sep-2018 00:00	NA_01	✓	✓	✓	✓	✓	✓	✔
EB1823470-040		_	_		1				
EB1823470-041	27-Sep-2018 00:00	NA_02	✓					✓	√
EB1823470-041 EB1823470-042	27-Sep-2018 00:00 27-Sep-2018 00:00	NA_02 NA_03	√	✓	✓	✓	✓	✓	✓
EB1823470-041	27-Sep-2018 00:00	NA_02	✓	✓ ✓		✓ ✓	✓ ✓	-	
EB1823470-041 EB1823470-042	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 Client sampling date / time	NA_02 NA_03 NA_04	√		✓			SOIL - EP003 Total Organic Carbon (TOC) in Soil	✓
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00	NA_02 NA_03 NA_04	√ √ √	Salts	✓ ✓	✓	EG020-SD etals in Sediments by ICPMS (NODG)	Carbon (TOC) in Soil	EP004: Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 Client sampling date / time	NA_02 NA_03 NA_04 Client sample ID	√ √ √	Salts	✓ ✓	✓	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	SOIL - EP003 Total Organic Carbon (TOC) in Soil	EP004: Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample ID EB1823470-001	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 Client sampling date / time 24-Sep-2018 00:00	NA_02 NA_03 NA_04 Client sample ID SB_02 (T1)	√ √ √	Salts	✓ ✓	✓	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	SOIL - EP003 Total Organic Carbon (TOC) in Soil	EP004: Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample ID EB1823470-001 EB1823470-002	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 Client sampling date / time 24-Sep-2018 00:00 24-Sep-2018 00:00	Client sample ID SB_02 (T1) SB_02 (T2)	√ √ √	Salts	✓ ✓	✓	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	SOIL - EP003 Total Organic Carbon (TOC) in Soil	EP004: Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample ID EB1823470-001 EB1823470-002 EB1823470-003	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 Client sampling date / time 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00	Client sample ID SB_02 (T1) SB_02 (T2) SB_02 (T3)	√ √ √	Salts	✓ ✓	✓	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	SOIL - EP003 Total Organic Carbon (TOC) in Soil	EP004: Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample ID EB1823470-001 EB1823470-002 EB1823470-003 EB1823470-004	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 Client sampling date / time 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00	Client sample ID SB_02 (T1) SB_02 (T2) SB_02 (T3) SB_16	√ √ √	Salts	✓ ✓	✓	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	SOIL - EP003 Total Organic Carbon (TOC) in Soil	EP004: Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample ID EB1823470-001 EB1823470-002 EB1823470-003 EB1823470-004 EB1823470-005	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00	Client sample ID SB_02 (T1) SB_02 (T2) SB_02 (T3) SB_16 SB_40	SOIL - EA010 (solids): Electrical Conductivity	SOIL - EA014 Total Soluble Safts	SOIL - EA037 ASS Field Screening Analysis	SOIL - ED045G (solids) Chloride Soluble by Discrete Analyser	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	SOIL - EP003 Total Organic Carbon (TOC) in Soil	SOIL - EP004 Organic Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample ID EB1823470-001 EB1823470-002 EB1823470-003 EB1823470-004 EB1823470-005 EB1823470-006	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00	Client sample ID SB_02 (T1) SB_02 (T2) SB_02 (T3) SB_16 SB_40 SB_45	SOIL - EA010 (solids): Electrical Conductivity	SOIL - EA014 Total Soluble Safts	SOIL - EA037 ASS Field Screening Analysis	SOIL - ED045G (solids) Chloride Soluble by Discrete Analyser	SOIL - EG020-SD A Chall Metals in Sediments by ICPMS (NODG)	SOIL - EP003 Total Organic Carbon (TOC) in Soil	SOIL - EP004 Organic Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample ID EB1823470-001 EB1823470-002 EB1823470-004 EB1823470-005 EB1823470-006 EB1823470-007	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00 24-Sep-2018 00:00	Client sample ID SB_02 (T1) SB_02 (T2) SB_02 (T3) SB_16 SB_40 SB_45 SB_50	SOIL - EA010 (solids): Electrical Conductivity	SOIL - EA014 Total Soluble Safts	SOIL - EA037 ASS Field Screening Analysis	SOIL - ED045G (solids) Chloride Soluble by Discrete Analyser	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	✓ ✓	SOIL - EP004 Organic Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample ID EB1823470-001 EB1823470-002 EB1823470-003 EB1823470-005 EB1823470-006 EB1823470-007 EB1823470-007	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 24-Sep-2018 00:00	Client sample ID SB_02 (T1) SB_02 (T2) SB_02 (T3) SB_16 SB_40 SB_45 SB_50 SB_52	SOIL - EA010 (solids): Electrical Conductivity	SOIL - EA014 Total Soluble Salts	SOIL - EA037 ASS Field Screening Analysis	SOIL - ED045G (solids) Chloride Soluble by Discrete Analyser	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	★ ★	SOIL - EP004 Organic Matter in Soil (Walkley Black)
EB1823470-041 EB1823470-042 EB1823470-043 Matrix: SOIL Laboratory sample ID EB1823470-001 EB1823470-002 EB1823470-004 EB1823470-005 EB1823470-006 EB1823470-007 EB1823470-008 EB1823470-008	27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 27-Sep-2018 00:00 24-Sep-2018 00:00	Client sample ID SB_02 (T1) SB_02 (T2) SB_02 (T3) SB_16 SB_40 SB_45 SB_50 SB_52 SB_58	SOIL - EA010 (solids): Electrical Conductivity	SOIL - EA014 Total Soluble Salts	SOIL - EA037 ASS Field Screening Analysis	SOIL - ED045G (solids) Chloride Soluble by Discrete Analyser	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	✓ ✓	SOIL - EP004 Organic Matter in Soil (Walkley Black)

Issue Date : 16-Oct-2018

Page

4 of 7 EB1823470 Amendment 0 Work Order Client : ADVISIAN PTY LTD

EB1823470-016 EB1823470-017 EB1823470-018 EB1823470-020 EB1823470-021 EB1823470-023 EB1823470-024 EB1823470-025 EB1823470-025 EB1823470-027 EB1823470-027 EB1823470-030 EB1823470-031 EB1823470-031 EB1823470-031 EB1823470-035 EB1823470-036 EB1823470-036 EB1823470-037 EB1823470-037 EB1823470-038 EB1823470-039 EB1823470-040 EB1823470-041 EB1823470-041	26-Sep-2018 00:00 26-Sep-2018 00:00 26-Sep-2018 00:00 26-Sep-2018 00:00 26-Sep-2018 00:00 26-Sep-2018 00:00 25-Sep-2018 00:00 27-Sep-2018 00:00	B1_07 B3_14 B4_01 B5_08 B5_10 D3 TB_02 TB_05 (T1) TB_05 (T2) TB_05 (T3) TB_12 TB_18 TB_26 TB_29 D5 REF_01 REF_02 REF_03 SG_01 SG_02 SG_03 H-3 NA_01 NA_02 NA_03 NA_04	SOIL - EA010 (solids): Electrical Conductivity	SOIL - EA014 Soluble Salts	SOIL - EA037 ASS Field Screening Analysis	SOIL - ED045G (solids) Chloride Soluble by Discrete Analyser	<td< th=""><th>SOIL - EP003</th><th>SOIL - EP004 Organic Matter in Soil (Walkley Black)</th></td<>	SOIL - EP003	SOIL - EP004 Organic Matter in Soil (Walkley Black)
			(On Hold) SOIL No analysis requested	SOIL - EA250 (Subcontracted) Gross beta/alpha activity in Soils	SOIL - EP071 - SD TRH ultra trace in sediments	SOIL - EP080-SD TRH(V)/BTEXN in Sediments	SOIL - EP131A OC Pesticides (Ultratrace)	SOIL - EP132B-SD Ultra-trace PAHs in Sediments	
Matrix: SOIL Laboratory sample ID EB1823470-013	Client sampling date / time 26-Sep-2018 00:00	Client sample ID B1_02 (T1)		SOIL - E Gross b	SOIL -	SOIL -	SOIL -	SOIL - E	
Laboratory sample	date / time		(On Hold	SOIL - E Gross b			SOIL -		0

: 16-Oct-2018 Issue Date

Page

5 of 7 EB1823470 Amendment 0 Work Order Client : ADVISIAN PTY LTD

			(On Hold) SOIL No analysis requested	SOIL - EA250 (Subcontracted) Gross beta/alpha activity in Soils	SOIL - EP071 - SD TRH ultra trace in sediments	SOIL - EP080-SD TRH(V)/BTEXN in Sediments	SOIL - EP131A OC Pesticides (Ultratrace)	SOIL - EP132B-SD Ultra-trace PAHs in Sediments
EB1823470-017	26-Sep-2018 00:00	B3_14			✓	√		✓
EB1823470-018	26-Sep-2018 00:00	B4_01			✓	✓		✓
EB1823470-019	26-Sep-2018 00:00	B5_08			✓	✓		✓
EB1823470-020	26-Sep-2018 00:00	B5_10			✓	✓		✓
EB1823470-021	26-Sep-2018 00:00	D3			✓	✓		✓
EB1823470-022	26-Sep-2018 00:00	D4	✓					
EB1823470-023	25-Sep-2018 00:00	TB_02		✓	✓	✓	✓	✓
EB1823470-024	25-Sep-2018 00:00	TB_05 (T1)		✓	1	✓	✓	✓
EB1823470-025	25-Sep-2018 00:00	TB_05 (T2)		✓	1	1	✓	✓
EB1823470-026	25-Sep-2018 00:00	TB_05 (T3)		✓	✓	✓	✓	✓
EB1823470-027	25-Sep-2018 00:00	TB_12		✓	✓	✓	✓	✓
EB1823470-028	25-Sep-2018 00:00	TB_18		✓	1	✓	✓	✓
EB1823470-029	25-Sep-2018 00:00	TB_26		✓	1	✓	✓	✓
EB1823470-030	25-Sep-2018 00:00	TB_29		✓	✓	✓	✓	✓
EB1823470-031	25-Sep-2018 00:00	D5		✓	1	✓	✓	✓
EB1823470-032	25-Sep-2018 00:00	D6	✓					
EB1823470-033	27-Sep-2018 00:00	REF_01			1	✓		✓
EB1823470-034	27-Sep-2018 00:00	REF_02			✓	✓		✓
EB1823470-035	27-Sep-2018 00:00	REF_03			1	✓		✓
EB1823470-036	27-Sep-2018 00:00	SG_01			✓	✓		✓
EB1823470-037	27-Sep-2018 00:00	SG_02			✓	✓		✓
EB1823470-038	27-Sep-2018 00:00	SG_03			1	✓		✓
EB1823470-040	27-Sep-2018 00:00	NA_01			✓	✓	✓	✓
EB1823470-041	27-Sep-2018 00:00	NA_02			1	✓	✓	✓
EB1823470-042	27-Sep-2018 00:00	NA_03			✓	✓	✓	✓
EB1823470-043	27-Sep-2018 00:00	NA_04			✓	✓	✓	✓
EB1823470-052	24-Sep-2018 00:00	Trip Blank Sand 1	✓					
EB1823470-053	25-Sep-2018 00:00	Trip Blank Sand 2	✓					
EB1823470-054	26-Sep-2018 00:00	Trip Blank Sand 3	✓					
EB1823470-055	27-Sep-2018 00:00	Trip Blank Sand 4	✓					
EB1823470-056	27-Sep-2018 00:00	OP2_42 / 0.0-0.5	✓					
EB1823470-057	27-Sep-2018 00:00	OP2 _42 / 0.5-1.0	✓					
EB1823470-058	27-Sep-2018 00:00	OP2 _42 / 1.0-1.5	✓					

Issue Date : 16-Oct-2018

Page

: 6 of 7 : EB1823470 Amendment 0 Work Order Client : ADVISIAN PTY LTD

Matrix: WATER Laboratory sample	Client sampling date / time	Client sample ID	(On Hold) WATER No analysis requested
EB1823470-044	27-Sep-2018 00:00	W1	√
EB1823470-045	27-Sep-2018 00:00	W2	√
EB1823470-046	27-Sep-2018 00:00	W3	✓
EB1823470-047	27-Sep-2018 00:00	W4	✓
Matrix: WATER Laboratory sample	Client sampling	Client sample ID	WATER - W-02T 8 metals (Total)
ID	date / time		
EB1823470-048	24-Sep-2018 00:00	Rinsate 1	✓
EB1823470-049			
	25-Sep-2018 00:00	Rinsate 2	✓
EB1823470-050	25-Sep-2018 00:00 26-Sep-2018 00:00	Rinsate 2 Rinsate 3	√

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

.EX			

- *AU Certificate of Analysis - NATA (COA)	Email	alex.kochnieff@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	alex.kochnieff@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	alex.kochnieff@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	alex.kochnieff@advisian.com
- Chain of Custody (CoC) (COC)	Email	alex.kochnieff@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	alex.kochnieff@advisian.com
- EDI Format - XTab (XTAB)	Email	alex.kochnieff@advisian.com

BILL BOYLSON

 *AU Certificate of Analysis - NATA (COA) 	Email	bill.boylson@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	bill.boylson@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bill.boylson@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bill.boylson@advisian.com
- A4 - AU Tax Invoice (INV)	Email	bill.boylson@advisian.com
- Attachment - Report (SUBCO)	Email	bill.boylson@advisian.com
- Chain of Custody (CoC) (COC)	Email	bill.boylson@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	bill.boylson@advisian.com
- EDI Format - XTab (XTAB)	Email	bill.boylson@advisian.com
NICHOLAS BAINTON		
*ALL Cartificate of Analysis NATA (COA)	Г:I	niahalaa haintan @aduisian ad

- *AU Certificate of Analysis - NATA (COA)	Email	nicholas.bainton@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	nicholas.bainton@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	nicholas.bainton@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nicholas.bainton@advisian.com
- Attachment - Report (SUBCO)	Email	nicholas.bainton@advisian.com
- Chain of Custody (CoC) (COC)	Email	nicholas.bainton@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	nicholas.bainton@advisian.com
- EDI Format - XTab (XTAB)	Email	nicholas.bainton@advisian.com

STEPHEN NEALE

- *AU Certificate of Analysis - NATA (COA)	Email	stephen.neale@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	stephen.neale@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	stephen.neale@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	stephen.neale@advisian.com
- A4 - AU Tax Invoice (INV)	Email	stephen.neale@advisian.com
- Attachment - Report (SUBCO)	Email	stephen.neale@advisian.com
- Chain of Custody (CoC) (COC)	Email	stephen.neale@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	stephen.neale@advisian.com
- EDI Format - XTab (XTAB)	Email	stephen.neale@advisian.com

Environmental Division

Brisbane

Work Order Reference EB1823470

FOR LABC

(ALS)	ALS Laboratory: please tick →	DERISSAND 2 Byth Street Stational Ph. 07 3043 7222 B. Samples Shisbi DISLAGET ONE 43 Callemonicat Di Ph. 07 4078 7544 C. ALSEnviro Cla	192,U 4953 Ore Webspicker con Ore Webspicker Chi	n D 4080	CT/FLBCURRE 3:4 Weiner Road Spr Pie 03 8540 9600 F Sarris its melbour CT/ UDGDE 1/29 Gydne, Road Muoge Ptr 02 6072 6735 E: tandger ma gyal	neis alcolopol co	in				Mage Nami Maw Walij Alegisha d Walipe WA 600 Saydec pertuji A		+		D I	82	23470
CLIENT: Advision Ply Ltd		Ph 07 MBPS 7044 C ALSERN 9 CH	TURNARO	UND REQUIREMENTS:	Standard TAT (List due date						FOR	LABC					
OFFICE: Lvl 31, 12 Creak PROJECT: Port of Macket		PROJECT NO.: 381081.0201	e.g., Ultra Tr.		Non Slandard or urgent TA1	(List due da		COC SEQUE	NCE NUMBE	ER (Cirole)	_	dy Sea ce / frc	てつ				N/A N/A
PROJECT: Port of Macket DRDER NUMBER:		E ORDER NO.: 381881.0281		OF ORIGIN:			_	1 2			7 Rand	om Se	\smile			1 4	
PROJECT MANAGER: B		CONTACT PH: SAMPLER MO			RELINQUISHED BY:		OF:	1 2 EIVED BY:	3 4	5 B	7 Other				100		
SAMPLER: Nicholas Bair COC Emailed to ALS? (EDD FORMAT			vicholes Bainton		1.00				1				l in ta	١,	7M49 & 100
meil Reports to (will de	lault to PM if no other addresses are it	sted): biñ.boyison@advisan.com. :	stephen neale	@advisian.com.nicholas.bain	DATE/TIME: 28.09.18 @ 16:15		DATE	MME:			DATE/TIME	i:					
	euit to PM if no other addresses ere lis IANDLING/STORAGE OR DISPOSAL		n, bill.boylson	@edvissn.com								_	T.	alenhar	n 8	1-7-324	3 7222
COMMENISSPECIAL		_					AI	NALYSIS RE	QUIRED in	cluding St	JITES (NB. S	ete Do	,,	Biebiioi	IE . T 0	11-7-02-9	57222
ALS USE ONLY	MATRIX:	LE DETAILS Solid(S) Water(W)		CONTAINER II	FORMATION						ni/Nored bolte re						
																	Comments on likely contaminant levels, dilutions, or samples requiring specific OC analysis etc.
					1								14. 8				
LAB ID	SAMPLE ID	DATE ! TIME	MATRIX	TYPE & PRESERVATIV		\$	E E				aler B		£ 5				
						lo Me	10/	ā		Inc q	PSD & settling	6	Salub				
						T0C.a	ž si	TPH/P	90	Radio	808	4.55 IS	EC.CI.	Lat.	15 S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	SB_02 (T1)	24.09.18	s	None	3 x 250 ml Jer 2 x Beg	1	1				1	1.14	. Proje	1959		100.00	1 Jar HOLD: 1 bag HOLD
2	8B_02 (T2)	24 09.18	8	Nane	2 x250ml Jar 1 x Bag	1	1				1				600	Mary 1	1 Jan HOLD
2	SB_02 (T3)	24.09,18	s	None	2 x250ml Jor 1 x Bag	1	1				1			1.15	90.811	Marian.	1 Jar HÖLD
4	S8_16	24.09.18	5	None	3 x 250ml Jar 2 x Bag	1	1				1	13 T.	100	. otta	1.0	14	1 Jar HOLD. 1 bag HOLD
5.	SB_40	24.09.16	s	Nané	3 x 250ml Jar 2 x Bag	1	1							HAR	497		1 Jer HOLD, 1 bag HOLD
6	SB_45	. 24.09.16	s	Nane	3 x 250ml Jar 2 x Beg	1	1				1	1	1		15.76		1 Jay HOLD, 1 bag HOLD
7	SB_50	24.99.18	s	None	3 x 250mi Jar 2 x Beg	1	١					1. 1			45,00		1 Jar HOLD, 1 bag HOLD
ි හි	SB_52	24.09.18	8	None	3 x 250ml Jar 2 x Beg	1	1					1 "	F1.	35.0		17.90	1 Jar HOLD. 1 bag HOLD
9	S8_58	24.09.16	s	None	3 x 250ml Jai 2 x Bag	1	1				ļ <u>.</u>	- 1	1	13.43	[14	1.15	1 Jar HOLD. 1 bag HOLD
10	SB_79	24.09.18	5	None	3 x 250ml Jan 2 x Bog	1	:				1	_				1000	1 Jar HOLD, 1 bag HOLD
1	D1	24.09.18	s	None	2 x 250ml Jar 1 x Beg	1	1				1			100	14.6		1 Jer HOLD
1	D2	24.09.18	s	None	2 x 250mt Jar 1 x Beg	1	1				1						1 Jar HOLD, 1 bag HOLD
(÷)	B1_02 (T1)	26 09.18	s	None	3 x 250 ml Jar 2 × Bag	1	1				1	1	1				1 Jar HOLD, 1 bag HOLD
147	B1_02 (T2)	26.09.18	ε	None	3 x 250 ml Jar 1 x Bog												1 Jar HOLD, 1 bag HOLD
3	B1_02 (T3)	26.09.18	8	None	3 x 250 ml Jar 1 x Bag										- 1 -		1 Jer HOLD, 1 bag HOLD
16	B1_07	26.09 18	8	None	3 x 250ml Jar 2 x Bag	1	1	1		<u> </u>		11.15					1 Jar HOLD, 2 bag HOLD
11	B3_14	26.69 18	s	None	2 x 250 ml Jar 2 x 8ag	1	1	1			1	1	, <u>, , 1</u>		17.4		1 Jar HOLD, 1 bag HOLD
16	B4_01	26.09.18	s	None	3 x 250 ml Jar 2 x Bag	1	1	1			1	1	1 1	1 1 1 1	1 1		1 Jar HOLD, 1 bag HOLD
19	85_08	26.09.18	s	None	3 x 250 ml Jar 2 x Bag	1	1	,				. 1	1		200		1 Jar HOLD, 1 bag HOLD
20	B6_10	26.09.18	8	None	3 x 250 mi Jar 2 x Bag	1	1	1			:				t e		1 Jar HOLD, 1 bag HOLD
(i	D3	26,09,16	s	None	2 x 250ml Jar 1 x Bag	1	1	1			,			1 1 1 1			
21-	D4	26.09.16	S	None	2 x 250ml Jat 1 x Beg	1	1	1			1					<u> </u>	
23	TB_02	26.09.18	8	None	4 x 250ml Jar 3 x Bag	1	. 1	1	1	1	1	61.41	144	3 2 3			1 Jar HOLD, 1 bag HOLD
24	TB_06 (T1)	25.09.18	S	None	4 x 250ml Jer 3 x Beg	- 1	1	1	1	1	ļ			. 1			1 Jar HOLD, 1 bag HOLD
25	TB_05 (T2)	25.09.18	S	None	4 x 250ml Jan 2 x Beg	1	. 1	1	1	1	<u> </u>	3 11		200			2 Jars HOLD, 1 bag HOLD
26	TB_05 (T3)	25,09,18	s	None	4 x 250 ml Jan 2 x Beg 4 x 250 ml Jar	1	1	1	1	1		2		170	. 1 4 4		2 Jars HOLD, 1 bag HOLD
27	TB_12	25.09.18	S	None	3 x Beg 4 x 250ml Jar	1	•	1	1	1			1.		1 1 1		2 Jers HOLD. 1 beg HOLD
0.42	TB_18	25.09.18	5	None	3 x Bag 4 x 250ml Jar	1	,	1	1	1	1	14" 14			19114	1 1 1 1 1	2 Jers HOLD, 1 bag HOLD
29	TB_26	25 09.18	S	None	3 x Bag 4 x 250ml Jar	1	1	1	1	1					1227	1	2 Jars HOLD, 1 bag HOLD
\$.0	ТВ_29	25.09.18	8	None	3 x Bag 2 x 250 m) Jar	1	1	1	1	· - ·	1		1.45 1.3	7.5	0.00	, 144 - 13 14 - 13	2 Jars HOLD, 1 bag HOLD
3/	DS DS	25.09.18	S	None	2 x 5ag 2 x 250ml Jar	1	1	1	1	ļ	<u> </u>		3.3			-	
34	D6	25.09.18	5	None	2 x 250ml Jar 2 x Bag 2 x 250ml Jar	1	1	1	1	1	1	1 1 1 1 1	5. 350 1. 350 1. 350	-	15.5		1
3,3	REF_01	27,09.18	s·	None	2 x 250mi Jar 1 x Bag 2 x 250mi Jar	1	1	1		-	1	13,40		1		111	· · · · ·
7,41	REF_02	27.09.18	s	None	2 x 250mi Jar 1 x Bag 2 x 250mi Jar	1	1	1	_		1	15.40 E		-			
35	REF_03	27.09.18	s	None	1 x Bag 2 x 250ml Jar	1	1	1	ļ		1	13 22		1.1	1	1 1	
1/2	5G_01	27,09,18	8	enpM	2 x Bag 2 x 250ml Jan	1	1	1		 	1 1	1-64 	4 45-		1 11 11	1.33.5	
37	SG_02	27,09.18	s	None	2 x Bag 2 x 250ml Jar	1	1	1			1					1.7	
26	SG_03	. 27,09.18	8	None	2 x 250mi Jar 2 x Bap 4 x 250mi Jar	1	1	1	_		1	135			13.14	P.534.03	2 Jars HOLD. 1 bag HOLD
39	H-3	26,09.18	S	None	2 x Bag 2 x 250ml Jar	1	1	 .	 	-		4	1.00	F		100000	E date meets 1 peg 110 to
1.47	NA_B1	27.09.18	8	None	1 x Bag 2 x 250ml Jar	<u> </u>	1	1	<u> </u>		1	1.1 Tab	10 20 4 10 20 4	1	1. 1.	1. 25 1.	NO BAG DUE TO NOT ENOUGH SAMPLE
17'	NA_02	27.09.18	3	None	2 x 250ml Jar	1	1	 	1		+	4.	18.5°	14 544 5	-	-	NO SHIP DOLL TO NOT ENGLISH SAMPLE
12	NA_03	27.09.18	8	None	1 x Seg 2 x 250ml Jez	1	1	1	'-	-	1	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+	
119	NA_04	27.09.18	S	None	1 x Bag	1	1	1	<u> </u>		+-		-	1 1 1 1 1 1 1	15.3 · ·	-	
H.5	W1	27.09.18	W	None	1 x 10L Container	 	 		+	 	1	1 7	1 1	-	3.44	1 11	-
L. ,	W2	27.09.18	W	None	1 x 10L Container	-	<u> </u>				+	*	1.5.5	1	A 1-97	-,	
H ₂	W3	27 09.16	w	None	1 x 10), Container	-	-	-			-		-			1	
49 S	W4	27.09.18	w w	None	1 x 18L Container		1	 	-		+	LINE VAL	Try silver	1.00		1 1 1	Metals Only
3+3k	Resate 1	24.09.18	. W			 	1	\vdash	-	-	1	7 sil - 2 st -	-	18 4 H	1	+ ==	Motals Only
2.5% 7.75	Rinsate 2	25.09.18	W	None	80ml Bottle 80ml Bottle	-	+ '		 -	-	1	141 H 13	-			1 2	Metais Only
	Rinsate 3	25.09.18	- w				+ ;	-	-				+	+		1 1 30	Metals Only
<u> </u>	Rinsate 4	27.09.18	w	None	80ml Bottle	-	 '	. 1	-			-		1 1	+-	100	STEX and Volatiles
	Trip Blank Sand 1	24,09,18	w			 	-	5 1	-	Η.	r i	1	1		1		BTEX and Volatiles
25.75	Trip Blank Sand 2	25.09.18	w	None			+	1	-			+		+	1	1	BTEX and Votatiles
5,61	Trip Blank Sand 3	26.09.18	- w	None	· .	+		1	-	1 :	-	-	100		+-:		BTEX and Volatiles
55	Trip Blank Sand 4	27.09.18	_ w	None		1	1	<u> </u>	 -	+ -	-	-	17.15	1	 		
1					TOTAL	1	1	1	1	Intraserved			1	i	1	4	

CIV PLBOURNE 24 Wester Road Springvale ViC 3171
Pla 03 8540 6600 F Savis as melbourne (Lakelood com ETV UDGEE 1/29 Sydney Road Muopee NSW 2850 Ptr 69 5077 8735 Er tandere me «Lalogleboi com

CHAIN OF CUSTODY

CERTIFICATE OF ANALYSIS

Work Order : EB1828594

Client : ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ---

Project : 301001.02018 - Port of Mackay Sediment Sampling

Order number

C-O-C number : ----

Sampler : NICHOLAS BAINTON

Site : ---

Quote number : BN/185/18

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 5

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 21-Nov-2018 17:54

Date Analysis Commenced : 23-Nov-2018

Issue Date : 30-Nov-2018 15:40

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD Matt Frost Senior Organic Chemist Brisbane Organics, Stafford, QLD

Page : 2 of 5 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EN68: This analysis in accordance with National Ocean Disposal Guidelines, Commonwealth of Australia, 2002 (modified). Results reported are those determined on a 1:4 sediment/seawater elutriate without blank correction.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page : 3 of 5
Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Analytical Results

Sub-Matrix: ELUTRIATE (Matrix: WATER)		Clie	ent sample ID	TB02	BLANK	 	
	Cli	ent sampli	ng date / time	25-Sep-2018 00:00	25-Sep-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EB1828594-001	EB1828594-004	 	
				Result	Result	 	
EN68: Seawater Elutriate Testing Prod	cedure						
Seawater Sampling Date		-	-		25/11/2018	 	
EP075(SIM)B: Polynuclear Aromatic H	lydrocarbons						
Naphthalene	91-20-3	1.0	μg/L	<1.0	<1.0	 	
Acenaphthylene	208-96-8	1.0	μg/L	<1.0	<1.0	 	
Acenaphthene	83-32-9	1.0	μg/L	<1.0	<1.0	 	
Fluorene	86-73-7	1.0	μg/L	<1.0	<1.0	 	
Phenanthrene	85-01-8	1.0	μg/L	<1.0	<1.0	 	
Anthracene	120-12-7	1.0	μg/L	<1.0	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	<1.0	 	
Pyrene	129-00-0	1.0	μg/L	<1.0	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	<1.0	 	
Chrysene	218-01-9	1.0	μg/L	<1.0	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	μg/L	<1.0	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	μg/L	<1.0	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	μg/L	<1.0	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	μg/L	<1.0	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	μg/L	<1.0	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbon	ıs	0.5	μg/L	<0.5	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.5	<0.5	 	
EP075(SIM)S: Phenolic Compound Su	irrogates						
Phenol-d6	13127-88-3	1.0	%	36.1	27.9	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	78.4	65.3	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	67.7	54.6	 	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	1.0	%	81.0	84.7	 	
Anthracene-d10	1719-06-8	1.0	%	56.2	54.4	 	
4-Terphenyl-d14	1718-51-0	1.0	%	58.5	57.0	 	

Page : 4 of 5 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB02	TB02	TB02	
	Cl	ient sampli	ng date / time	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1828594-001	EB1828594-002	EB1828594-003	
				Result	Result	Result	
EA055: Moisture Content (Dried @ 10	05-110°C)						
Moisture Content		0.1	%	64.4	64.4	64.4	
EN68: Seawater Elutriate Testing Pro	ocedure						
Seawater Sampling Date		-	-	25/11/2018			
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons						
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	
^ Sum of polycyclic aromatic hydrocarbo	ons	0.5	mg/kg	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	
EP075(SIM)S: Phenolic Compound S	urrogates						
Phenol-d6	13127-88-3	0.5	%	126	122	130	
2-Chlorophenol-D4	93951-73-6	0.5	%	120	114	124	
2.4.6-Tribromophenol	118-79-6	0.5	%	112	109	113	
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	105	101	109	
Anthracene-d10	1719-06-8	0.5	%	106	102	110	
4-Terphenyl-d14	1718-51-0	0.5	%	104	97.0	107	

Page : 5 of 5 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Surrogate Control Limits

Sub-Matrix: ELUTRIATE		Recovery Limits (%)			
Compound	CAS Number	Low	High		
EP075(SIM)S: Phenolic Compound Surrogates					
Phenol-d6	13127-88-3	10	72		
2-Chlorophenol-D4	93951-73-6	27	130		
2.4.6-Tribromophenol	118-79-6	19	181		
EP075(SIM)T: PAH Surrogates					
2-Fluorobiphenyl	321-60-8	14	146		
Anthracene-d10	1719-06-8	35	137		
4-Terphenyl-d14	1718-51-0	36	154		

Sub-Matrix: SOIL		Recovery Limits (%)				
Compound	CAS Number	Low	High			
EP075(SIM)S: Phenolic Compound Surrogates						
Phenol-d6	13127-88-3	35	155			
2-Chlorophenol-D4	93951-73-6	42	153			
2.4.6-Tribromophenol	118-79-6	26	157			
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	34	157			
Anthracene-d10	1719-06-8	37	153			
4-Terphenyl-d14	1718-51-0	42	172			

QUALITY CONTROL REPORT

Work Order : EB1828594

Client : ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ----

Project : 301001.02018 - Port of Mackay Sediment Sampling

Order number

C-O-C number : ---

Sampler : NICHOLAS BAINTON

Site · ---

Quote number : BN/185/18

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 6

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 21-Nov-2018

Date Analysis Commenced : 23-Nov-2018

Issue Date · 30-Nov-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD Matt Frost Senior Organic Chemist Brisbane Organics, Stafford, QLD

Page : 2 of 6 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 2053001)							
EB1828533-001	Anonymous	EA055: Moisture Content		0.1	%	8.1	8.0	1.54	No Limit
EB1828566-002	Anonymous	EA055: Moisture Content		0.1	%	7.6	7.9	3.15	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydro	carbons (QC Lot: 2052992)							
EB1828528-001	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit	
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%

Page : 3 of 6
Work Order : EB1828594

Client : ADVISIAN PTY LTD

ub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP075(SIM)B: Polyr	nuclear Aromatic Hydro	carbons (QC Lot: 2057574) - continued								
EB1828292-001	Anonymous	EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.0005 mg/L	<0.5	0.00	No Limit	
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	μg/L	<0.0005 mg/L	<0.5	0.00	No Limit	
		EP075(SIM): Naphthalene	91-20-3	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
	EP075	EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Fluorene	86-73-7	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Anthracene	120-12-7	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Pyrene	129-00-0	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Chrysene	218-01-9	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
			205-82-3							
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<0.0010 mg/L	<1.0	0.00	No Limit	

Page : 4 of 6 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EN68: Seawater Elutriate Testing Procedure (C	QCLot: 2056290)									
EN68a: Seawater Sampling Date			-	25/11/2018						
EP075(SIM)B: Polynuclear Aromatic Hydrocarb	ons (QCLot: 2052992)									
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	1.5 mg/kg	# 127	74	119		
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	1.5 mg/kg	# 126	74	118		
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	1.5 mg/kg	# 126	83	121		
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	1.5 mg/kg	# 125	81	116		
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	1.5 mg/kg	# 135	72	117		
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	1.5 mg/kg	# 136	72	115		
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	1.5 mg/kg	# 135	70	116		
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	1.5 mg/kg	# 135	70	134		
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	1.5 mg/kg	# 130	64	120		
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	1.5 mg/kg	# 129	66	119		
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	1.5 mg/kg	121	59	129		
	205-82-3									
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	1.5 mg/kg	126	70	129		
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	1.5 mg/kg	# 127	76	121		
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	1.5 mg/kg	124	53	135		
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	1.5 mg/kg	123	45	134		
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	1.5 mg/kg	123	64	131		
Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC)	S) Report				
MO MOUNT TAILI			Report	Cnika	Spike Because (9/)	<i>,</i> .	Limita (9/)			

				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 2057574)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	10 μg/L	78.7	50	110
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	10 μg/L	89.8	49	124
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	10 μg/L	86.8	55	114
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	10 μg/L	89.3	55	119
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	10 μg/L	87.2	51	127
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	10 μg/L	63.7	55	127
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	10 μg/L	66.5	55	127
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	10 μg/L	67.0	54	126
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	10 μg/L	68.7	47	136
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	10 μg/L	65.5	51	129

Page : 5 of 6
Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon	s (QCLot: 2057574) - cor	ntinued							
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<1.0	10 μg/L	101	55	132	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	10 μg/L	99.7	58	128	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	10 μg/L	104	55	131	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	10 μg/L	103	52	133	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	10 μg/L	107	48	137	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	10 μg/L	100	53	131	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbon	s (QCLot: 2067258)								
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	10 μg/L	77.6	50	110	
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	10 μg/L	82.5	49	124	
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	10 μg/L	81.8	55	114	
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	10 μg/L	82.2	55	119	
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	10 μg/L	78.3	51	127	
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	10 μg/L	56.1	55	127	
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	10 μg/L	57.1	55	127	
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	10 μg/L	57.9	54	126	
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	10 μg/L	55.0	47	136	
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	10 μg/L	57.5	51	129	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<1.0	10 μg/L	94.8	55	132	
	205-82-3								
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	μg/L	<1.0	10 μg/L	79.6	58	128	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	10 μg/L	89.4	55	131	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	10 μg/L	79.0	52	133	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	10 μg/L	67.3	48	137	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	10 μg/L	82.8	53	131	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP075(SIM)B: Pol	ynuclear Aromatic Hydrocarbons (QC	Lot: 2052992)							
EB1828528-002	Anonymous	EP075(SIM): Acenaphthene	83-32-9	1.5 mg/kg	118	70	130		
		EP075(SIM): Pyrene	129-00-0	1.5 mg/kg	123	70	130		
Sub-Matrix: WATER				M	atrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)		

Page : 6 of 6 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: WATER				Ma	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 2057574)						
EB1828851-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 μg/L	79.7	70	130
		EP075(SIM): Pyrene	129-00-0	10 μg/L	92.6	70	130

QA/QC Compliance Assessment to assist with Quality Review

: EB1828594 **Work Order** Page : 1 of 5

: Environmental Division Brisbane Client : ADVISIAN PTY LTD Laboratory

: MR BILL BOYLSON Telephone : +61 7 3552 8662 Contact **Project** : 301001.02018 - Port of Mackay Sediment Sampling **Date Samples Received** : 21-Nov-2018 : 30-Nov-2018

Issue Date Site

: NICHOLAS BAINTON Sampler No. of samples received : 4 Order number No. of samples analysed ٠4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Matrix Spike outliers occur.
- Laboratory Control outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Naphthalene	91-20-3	127 %	74-119%	Recovery greater than upper control
							limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Acenaphthylene	208-96-8	126 %	74-118%	Recovery greater than upper control
							limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Acenaphthene	83-32-9	126 %	83-121%	Recovery greater than upper control
							limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Fluorene	86-73-7	125 %	81-116%	Recovery greater than upper control
							limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Phenanthrene	85-01-8	135 %	72-117%	Recovery greater than upper control
							limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Anthracene	120-12-7	136 %	72-115%	Recovery greater than upper control
							limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Fluoranthene	206-44-0	135 %	70-116%	Recovery greater than upper control
							limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Pyrene	129-00-0	135 %	70-134%	Recovery greater than upper control
							limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Benz(a)anthracene	56-55-3	130 %	64-120%	Recovery greater than upper control
			, ,				limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Chrysene	218-01-9	129 %	66-119%	Recovery greater than upper control
			-				limit
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	QC-2052992-002		Benzo(a)pyrene	50-32-8	127 %	76-121%	Recovery greater than upper control
			\				limit

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Matrix. SOIL							
Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA055: Moisture Content (Dried @	⊉ 105-110°C)						
Soil Glass Jar - Unpreserved							
TB02,	TB02,				23-Nov-2018	09-Oct-2018	45
TB02							
EN68: Seawater Elutriate Testing	Procedure						
Non-Volatile Leach: 14 day HT(e.	.g. SV organics)						
TB02,	BLANK	26-Nov-2018	09-Oct-2018	48			
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons						
Soil Glass Jar - Unpreserved							
TB02,	TB02,	24-Nov-2018	09-Oct-2018	46			
TB02							

Page : 3 of 5 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Matrix: WATER

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons						
Amber Glass Bottle - Unpreserved						
BLANK	30-Nov-2018	02-Oct-2018	59			

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: x = Holding time breach; ✓ = Within holding time.

IVIALITA. SOIL					Lvaluation	Tiolding time	breach, • - with	ir nording time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
TB02,	TB02,	25-Sep-2018				23-Nov-2018	09-Oct-2018	sc
TB02								
EN68: Seawater Elutriate Testing Procedure								
Non-Volatile Leach: 14 day HT(e.g. SV organics) (EN68	a)							
TB02,	BLANK	25-Sep-2018	26-Nov-2018	09-Oct-2018	<u>*</u>			
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP075(SIM))								
TB02,	TB02,	25-Sep-2018	24-Nov-2018	09-Oct-2018	<u>\$£</u>	26-Nov-2018	03-Jan-2019	✓
TB02								

Matrix: WATER

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Method	Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM))							
BLANK	25-Sep-2018	30-Nov-2018	02-Oct-2018	se .	30-Nov-2018	09-Jan-2019	✓
Amber Glass Bottle - Unpreserved (EP075(SIM))							
TB02	26-Nov-2018	26-Nov-2018	03-Dec-2018	✓	26-Nov-2018	05-Jan-2019	✓

Page : 4 of 5 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	<u>, </u>			Evaluation	n: x = Quality Co	introl frequency i	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Seawater Elutriate Testing Procedure	EN68a	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Laboratory Control Samples (LCS) PAH/Phenols (GC/MS - SIM)	EP075(SIM)	2	8	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
	EP075(SIM)	2	8	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	2	8	25.00 25.00	5.00	√	NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM) Method Blanks (MB)						_	

Page : 5 of 5 Work Order : EB1828594

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Seawater Elutriate Testing Procedure	EN68a	SOIL	USEPA Evaluation of Dredged Material Proposed for Ocean Disposal - Testing Guide, 1991, EPA-503/8-91/001, USEPA and US Army Corps of Engineers. ANZECC Interim Ocean Disposal Guidelines, December, 1998 This Procedure outlines the preparation of leachate designed to simulate release of contaminants from sediment during the disposal of dredged material. Release can occur by physical processes or a variety of chemical changes such as oxidation of metal sulphides and release of contaminants adsorbed to particles or organic matter.
Separatory Funnel Extraction of Liquids	ORG14	SOIL	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

From: Kochnieff, Alex (Brisbane) [mailto:ALEX.KOCHNIEFF@advisian.com]

Sent: Wednesday, 21 November 2018 5:54 PM To: Caroline Hill < caroline.hill@ALSGlobal.com>

Subject: EB1823470 - Rebatch

Good evening Caroline,

I have yet another rebatch required.

Could you please analyse sample EB1823470023 (Advisian ID TB 02) for:

- PAHs in triplicate
- PAHs in elutriate

Please let me know if this is possible.

Kind regards,

Alex Kochnieff

Senior Environmental Engineer

Level 31, 12 Creek St | Brisbane City, QLD 4000 P +61 7 3319 3940 | M +61 468 660 301

E alex.kochnieff@advisian.com

www.advisian.com | Follow Advisian

Environmental Division Brisbane Work Order Reference

Telephone: + 61-7-3243 7222

*** Advisian Notice *** "This email is confidential. If you are not the intended recipient, you must not disclose or use the information contained in it. If you have received this email in error, please notify us immediately by return email and delete the email and any attachments. Any personal views or opinions expressed by the writer may not necessarily reflect the views or opinions of any company in the WorleyParsons Group of Companies. How we use your personal data: http://www.advisian.com/enus/who-we-are/privacy-policy /SPAN>

CERTIFICATE OF ANALYSIS

Work Order : EB1828853

: ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ---

Project : 301001.02018 - Port of Mackay Sediment Sampling

Order number

Client

C-O-C number : ----

Sampler : NICHOLAS BAINTON

Site

Quote number : BN/185/18

No. of samples received : 15

No. of samples analysed : 15

Page : 1 of 5

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 22-Nov-2018 13:06

Date Analysis Commenced : 05-Dec-2018

Issue Date : 06-Dec-2018 10:27

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dianne Blane Laboratory Coordinator (2IC) Newcastle - Inorganics, Mayfield West, NSW

Page : 2 of 5 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EA150H: The matrix of samples fell outside the scope of the method. They contained extremely high dissolved salts which were unable to be removed from the sample without the loss of fine soil particles. Particle size results were calculated using an electrical conductivity correction consistent with the blank dispersant solution. Results should be scrutinised accordingly.
- EA151: ALS does not hold NATA accreditation for Settleability.

Page : 3 of 5
Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB_40	SB_50	SB_58	B1_07	B5_08
	Ci	lient sampli	ng date / time	24-Sep-2018 00:00	24-Sep-2018 00:00	24-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1828853-001	EB1828853-002	EB1828853-003	EB1828853-004	EB1828853-005
				Result	Result	Result	Result	Result
EA150: Particle Sizing								
+75μm		1	%	12	92	25	28	24
+150µm		1	%	8	85	6	25	14
+300µm		1	%	5	56	2	21	10
+425µm		1	%	4	28	2	17	8
+600µm		1	%	3	8	1	12	6
+1180µm		1	%	1	<1	<1	5	2
+2.36mm		1	%	<1	<1	<1	1	<1
+4.75mm		1	%	<1	<1	<1	<1	<1
+9.5mm		1	%	<1	<1	<1	<1	<1
+19.0mm		1	%	<1	<1	<1	<1	<1
+37.5mm		1	%	<1	<1	<1	<1	<1
+75.0mm		1	%	<1	<1	<1	<1	<1
EA150: Soil Classification based on Pa	article Size							
Clay (<2 µm)		1	%	40	4	36	46	43
Silt (2-60 μm)		1	%	43	1	30	24	29
Sand (0.06-2.00 mm)		1	%	16	95	34	27	27
Gravel (>2mm)		1	%	1	<1	<1	3	1
Cobbles (>6cm)		1	%	<1	<1	<1	<1	<1
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.12	1.54	1.21	1.15	1.19
ø Underflow Solids		0.1	%	19.8	59.1	25.8	22.9	25.5
ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.267	24.4	2.20	2.00	2.80
ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.030	1.80	0.067	0.021	0.058
ø Clarity		-	-	Clear	Clear	Clear	Clear	Clear
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.13	1.49	1.18	1.18	1.15
ø Underflow Solids		0.1	%	23.2	58.4	24.1	24.1	24.9
Ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.017	14.4	0.016	0.033	0.016
ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.010	0.200	0.016	0.010	0.016
ø Clarity		-	-	Clear	Clear	Clear	Clear	Clear
EA152: Soil Particle Density								
ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.65	2.63	2.61	2.58	2.62

Page : 4 of 5 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_05 (T1)	TB_12	TB_26	Н-3	OP2_32 (0-0.5)
	Ci	lient sampli	ng date / time	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	28-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1828853-006	EB1828853-007	EB1828853-008	EB1828853-009	EB1828853-010
				Result	Result	Result	Result	Result
EA150: Particle Sizing								
+75μm		1	%	21	2	3	54	42
+150µm		1	%	15	<1	1	25	30
+300µm		1	%	10	<1	<1	14	20
+425µm		1	%	7	<1	<1	6	16
+600µm		1	%	5	<1	<1	2	12
+1180µm		1	%	4	<1	<1	<1	5
+2.36mm		1	%	<1	<1	<1	<1	2
+4.75mm		1	%	<1	<1	<1	<1	<1
+9.5mm		1	%	<1	<1	<1	<1	<1
+19.0mm		1	%	<1	<1	<1	<1	<1
+37.5mm		1	%	<1	<1	<1	<1	<1
+75.0mm		1	%	<1	<1	<1	<1	<1
EA150: Soil Classification based on Pa	article Size							
Clay (<2 µm)		1	%	40	46	44	26	31
Silt (2-60 μm)		1	%	34	42	52	14	19
Sand (0.06-2.00 mm)		1	%	24	12	4	60	47
Gravel (>2mm)		1	%	2	<1	<1	<1	3
Cobbles (>6cm)		1	%	<1	<1	<1	<1	<1
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.16	1.06	1.05	1.21	1.21
ø Underflow Solids		0.1	%	26.1	20.0	20.2	30.6	31.7
ø Settling Rate @ 50% of Settlement		0.001	mm/min	2.80	0.267	0.267	1.80	3.80
ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.075	0.036	0.032	0.083	0.067
ø Clarity		-	-	Clear	Clear	Clear	Clear	Clear
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.15	1.11	1.14	1.32	1.27
Ø Underflow Solids		0.1	%	24.1	22.9	21.5	36.1	37.5
Ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.017	0.009	0.017	1.00	2.60
ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.002	0.009	0.004	0.025	0.033
Ø Clarity		-	-	Clear	Clear	Clear	Clear	Clear
EA152: Soil Particle Density								
ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.55	2.55	2.41	2.52	2.62

Page : 5 of 5 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_36 (0-0.5)	OP2_36 (0.5-1.0)	OP2_36 (1.0-1.5)	OP2_33 (0-0.5)	OP2_18 (0-0.5)
	CI	ient sampli	ng date / time	28-Sep-2018 00:00	28-Sep-2018 00:00	28-Sep-2018 00:00	28-Sep-2018 00:00	26-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1828853-011	EB1828853-012	EB1828853-013	EB1828853-014	EB1828853-015
				Result	Result	Result	Result	Result
A150: Particle Sizing								
+75µm		1	%	58	61	30	33	38
+150µm		1	%	50	55	20	20	28
+300µm		1	%	43	48	16	13	21
+425µm		1	%	38	44	13	11	17
+600µm		1	%	30	37	9	9	13
+1180µm		1	%	15	20	2	4	7
+2.36mm		1	%	5	10	<1	<1	3
+4.75mm		1	%	2	8	<1	<1	2
+9.5mm		1	%	<1	6	<1	<1	<1
+19.0mm		1	%	<1	<1	<1	<1	<1
+37.5mm		1	%	<1	<1	<1	<1	<1
+75.0mm		1	%	<1	<1	<1	<1	<1
A150: Soil Classification based on Pa	article Size							
Clay (<2 µm)		1	%	24	24	34	29	34
Silt (2-60 µm)		1	%	16	11	29	25	22
Sand (0.06-2.00 mm)		1	%	52	52	36	44	40
Gravel (>2mm)		1	%	8	13	1	2	4
Cobbles (>6cm)		1	%	<1	<1	<1	<1	<1
A151: Settleability 10%								
Underflow Density		0.01	g/cm3	1.21	1.27	1.18		1.18
Underflow Solids		0.1	%	35.2	40.3	31.4		30.2
Settling Rate @ 50% of Settlement		0.001	mm/min	4.00	3.40	2.40		2.00
Settling Rate @ 90% of Settlement		0.001	mm/min	0.067	0.050	0.067		0.075
Clarity		-	-	Clear	Clear	Clear		Clear
EA151: Settleability 20%								
Underflow Density		0.01	g/cm3	1.31	1.34	1.25		1.23
Underflow Solids		0.1	%	40.1	44.0	35.6		35.4
Settling Rate @ 50% of Settlement		0.001	mm/min	3.00	2.80	0.400		0.600
Settling Rate @ 90% of Settlement		0.001	mm/min	0.025	0.025	0.011		0.009
⊙ Clarity		-	-	Clear	Clear	Clear		Clear
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.64	2.63	2.66	2.64	2.63

QUALITY CONTROL REPORT

Work Order : EB1828853

: ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ----

Project : 301001.02018 - Port of Mackay Sediment Sampling

Order number

Client

C-O-C number : ---

Sampler : NICHOLAS BAINTON

Site

Quote number : BN/185/18

No. of samples received : 15
No. of samples analysed : 15

Page : 1 of 3

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 22-Nov-2018

Date Analysis Commenced : 05-Dec-2018

Issue Date · 06-Dec-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dianne Blane Laboratory Coordinator (2IC) Newcastle - Inorganics, Mayfield West, NSW

Page : 2 of 3 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Page : 3 of 3 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

• No Method Blank (MB) or Laboratory Control Spike (LCS) Results are required to be reported.

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EB1828853** Page : 1 of 6

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Telephone : +61 7 3552 8662
Project : 301001.02018 - Port of Mackay Sediment Sampling Date Samples Received : 22-Nov-2018

Site : Issue Date : 06-Dec-2018

Sampler : NICHOLAS BAINTON No. of samples received : 15
Order number : No. of samples analysed : 15

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: x = Holding time breach: \(\square = \text{Within holding time.} \)

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach; ✓ = Withi	in holding tim
Method			Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA150: Particle Sizing								
Snap Lock Bag (EA150H)								
SB_40,	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
SB_58								
Snap Lock Bag (EA150H)								
TB_05 (T1),	TB_12,	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
TB_26,	H-3							
Snap Lock Bag (EA150H)								
B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Snap Lock Bag (EA150H)								
OP2_36 (0-0.5),	OP2_36 (0.5-1.0),	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
OP2_36 (1.0-1.5),	OP2_33 (0-0.5)							
Soil Glass Jar - Unpreserved (EA150H)								
OP2_18 (0-0.5)		26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA150H)								
OP2_32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
EA150: Soil Classification based on Particle Si	ize							
Snap Lock Bag (EA150H)								
SB_40,	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
SB_58								
Snap Lock Bag (EA150H)								
TB_05 (T1),	TB_12,	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
TB_26,	H-3							
Snap Lock Bag (EA150H)								
B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Snap Lock Bag (EA150H)								
OP2_36 (0-0.5),	OP2_36 (0.5-1.0),	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
OP2_36 (1.0-1.5),	OP2_33 (0-0.5)							
Soil Glass Jar - Unpreserved (EA150H)								
OP2_18 (0-0.5)		26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA150H)								
OP2_32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	✓

Page : 3 of 6
Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Matrix: SOIL					Evaluation		breach ; ✓ = Withi	ii noluliig tiii
Method	Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA151: Settleability 10%								
Snap Lock Bag (EA151-10)								
SB_40,	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
SB_58								
Snap Lock Bag (EA151-10)								
TB_05 (T1),	TB_12,	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
TB_26,	H-3							
Snap Lock Bag (EA151-10)								
B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Snap Lock Bag (EA151-10)								
OP2_36 (0-0.5),	OP2_36 (0.5-1.0),	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
OP2_36 (1.0-1.5)								
Soil Glass Jar - Unpreserved (EA151-10)								
OP2_18 (0-0.5)		26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA151-10)								
OP2_32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
EA151: Settleability 20%								
Snap Lock Bag (EA151-20)								
SB_40,	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
SB_58								
Snap Lock Bag (EA151-20)								
TB_05 (T1),	TB_12,	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
TB_26,	H-3							
Snap Lock Bag (EA151-20)								
B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Snap Lock Bag (EA151-20)								
OP2_36 (0-0.5),	OP2_36 (0.5-1.0),	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
OP2_36 (1.0-1.5)								
Soil Glass Jar - Unpreserved (EA151-20)								
OP2_18 (0-0.5)		26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA151-20)								
OP2_32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	✓

Page : 4 of 6
Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA152: Soil Particle Density								
Snap Lock Bag (EA152) SB_40, SB_58	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
Snap Lock Bag (EA152) TB_05 (T1), TB 26,	TB_12, H-3	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
Snap Lock Bag (EA152) B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Snap Lock Bag (EA152) OP2_36 (0-0.5), OP2_36 (1.0-1.5),	OP2_36 (0.5-1.0), OP2_33 (0-0.5)	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA152) OP2_18 (0-0.5)	o. <u></u> so (o o.o,	26-Sep-2018				05-Dec-2018	25-Mar-2019	√
Soil Glass Jar - Unpreserved (EA152) OP2_32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	✓

Page : 5 of 6
Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Quality Control Parameter Frequency Compliance

No Quality Control data available for this section.

Page : 6 of 6 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Settleability 10%	* EA151-10	SOIL	In house: Determination of the settling rate of sediment or sludge in 10% solids slurries in seawater
Settleability 20%	* EA151-20	SOIL	In house: Determination of the settling rate of sediment or sludge in 20% solids slurries in seawater
Soil Particle Density	* EA152	SOIL	Soil Particle Density by AS 1289.3.5.1-2006 : Methods of testing soils for engineering purposes - Soil
			classification tests - Determination of the soil particle density of a soil - Standard method

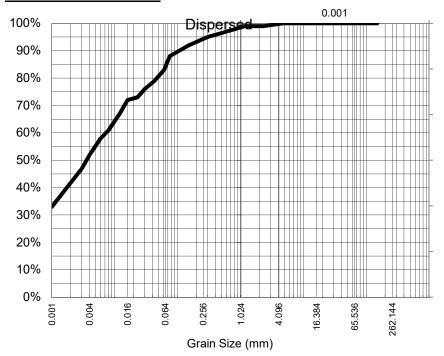
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-001 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: SB 40

Sediment Sampling

Particle Size Distribution

Anal	ysis	Notes

Samples analysed as received.

Particle Size (mm)	% Passing
,	
4.75	100%
2.36	99%
1.18	99%
0.600	97%
0.425	96%
0.300	95%
0.150	92%
0.075	88%
Particle Size (microns)	
43	79%
30	76%
23	73%
16	72%
12	67%
8	61%
6	58%
4	52%
1	33%

Median Particle Size (r	nm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.65

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

Laboratory Coordinator

Authorised Signatory

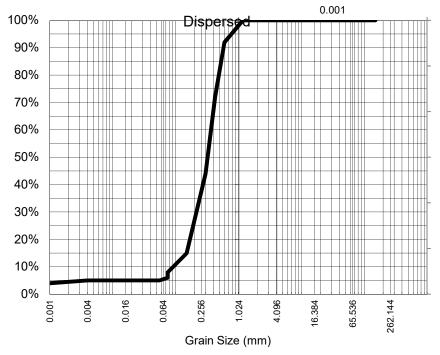
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

DATE REPORTED: 5-Dec-2018 **CLIENT:** Bill Boylson

DATE RECEIVED: 22-Nov-2018 **COMPANY:** ADVISIAN PTY LTD

EB1828853-002 / PSD ADDRESS: LEVEL 3 **REPORT NO:**


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay SB 50

Sediment Sampling

Particle Size Distribution

Ana	lysis	Notes

Samples analysed as received.

Particle Size (mm)	% Passing
1.18	100%
0.600	92%
0.425	72%
0.300	44%
0.150	15%
0.075	8%
Particle Size (microns)	
55	5%
39	5%
27	5%
19	5%
14	5%
10	5%
7	5%
5	5%
1	4%

Median Particle Size (mm)* 0.327	e Size (mm)* 0.327	n Particle Size (mm)* 0.327
----------------------------------	--------------------	-----------------------------

30-Nov-18

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.3 states that hydrometer analysis is not applicable for Analysed: **Sample Comments:**

samples containing <10% fines (<75um). Results should be assessed

accordingly

NA **Limit of Reporting:** 1% Loss on Pretreatment

Dispersion Method Shaker **Sample Description:** SAND

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.63

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator **Authorised Signatory**

Page 1 of 1 Template Version PKV8.0 180919

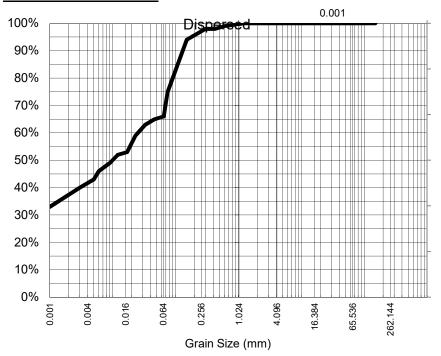
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-003 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: SB 58

Sediment Sampling

Particle Size Distribution

Analysis Notes

Test Method:

Samples analysed as received.

Particle Size (mm)	% Passing
1.18	100%
0.600	99%
0.425	98%
0.300	98%
0.150	94%
0.075	75%
Particle Size (microns)	
46	65%
33	63%
23	59%
17	53%
12	52%
9	49%
6	46%
5	43%
1	33%

I٨	/ledian	Particle	Size	(mm)*	0.010
I۷	ucuiaii	raitible	SIZE	(111111 <i>)</i>	0.010

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.61

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

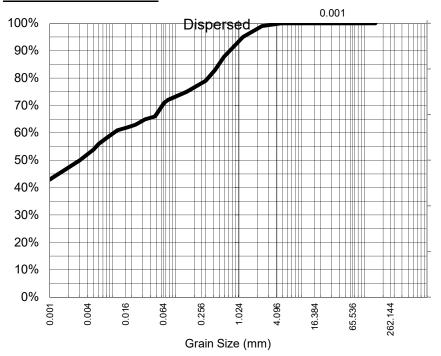
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-004 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: B1_07

Sediment Sampling

Particle Size Distribution

Anal	ysis	Notes

Test Method:

Samples analysed as received.

Particle Size (mm)	% Passing
,	Ŭ
4.75	100%
2.36	99%
1.18	95%
0.600	88%
0.425	83%
0.300	79%
0.150	75%
0.075	72%
Particle Size (microns)	
47	66%
33	65%
23	63%
17	62%
12	61%
9	59%
6	56%
5	54%
1	43%

Median Particle Size (r	nm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.58

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

Dianne Blane
Laboratory Coordinator

Authorised Signatory

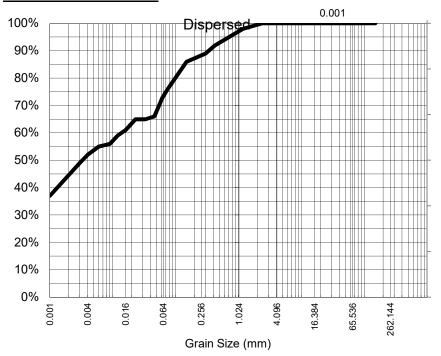
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-005 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: B5 08

Sediment Sampling

Particle Size Distribution

Anal	ysis	Notes

Samples analysed as received.

	•
Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	94%
0.425	92%
0.300	89%
0.150	86%
0.075	76%
Particle Size (microns)	
46	66%
33	65%
23	65%
16	61%
12	59%
9	56%
6	55%
4	52%
1	37%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.62

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

Dianne Blane
Laboratory Coordinator

Authorised Signatory

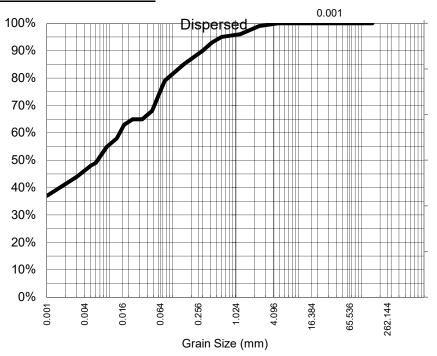
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Rewcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-006 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: TB_05 (T1)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	96%
0.600	95%
0.425	93%
0.300	90%
0.150	85%
0.075	79%
Particle Size (microns)	
47	68%
33	65%
23	65%
17	63%
13	58%
9	55%
6	49%
5	48%
1	37%

Median Particle Size (mm)* 0.007

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.55

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

Dianne Blane
Laboratory Coordinator

Authorised Signatory

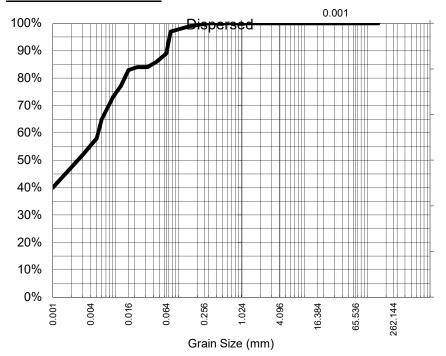
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-007 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: TB_12

Sediment Sampling

Particle Size Distribution

Analysis Notes

Test Method:

Samples analysed as received.

D (1.1.0) ()	I 0/ D :
Particle Size (mm)	% Passing
0.300	100%
0.150	99%
0.075	97%
Particle Size (microns)	
45	86%
32	84%
22	84%
16	83%
12	77%
9	73%
6	65%
5	58%
1	40%

M	/ *	<0.00G
Median Particle Size	mm) [^]	<0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.55

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

Dianne Blane
Laboratory Coordinator

Authorised Signatory

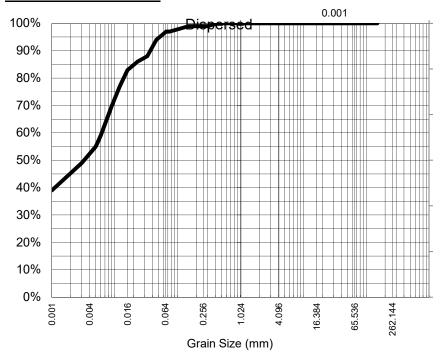
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-008 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: TB 26

Sediment Sampling

Particle Size Distribution

Analysis Notes

Test Method:

Samples analysed as received.

AS1289.3.6.2/AS1289.3.6.3

Particle Size (mm)	% Passing
0.425	100%
0.300	99%
0.150	99%
0.075	97%
Particle Size (microns)	
46	94%
33	88%
23	86%
16	83%
12	77%
9	70%
6	59%
5	55%
1	39%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.41 (2.45)*

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

Dianne Blane
Laboratory Coordinator

Authorised Signatory

^{*} Soil Particle Density results fell outside the scope of AS 1289.3.6.3. Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

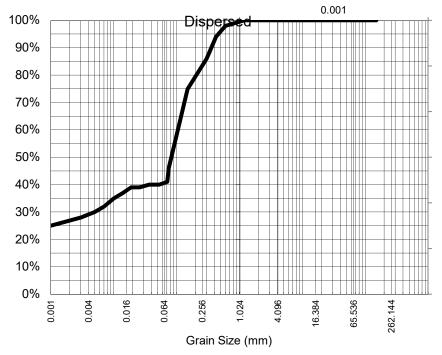
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-009 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: H-3

Sediment Sampling

Particle Size Distribution

Ana	lysis	Notes

Test Method:

Samples analysed as received.

D (1 1 0 - /)	I 0/ D :
Particle Size (mm)	% Passing
1.18	100%
0.600	98%
0.425	94%
0.300	86%
0.150	75%
0.075	46%
Particle Size (microns)	
53	40%
37	40%
26	39%
19	39%
14	37%
10	35%
7	32%
5	30%
1	25%

IMedian Particle Size (mm)* 0.085	Median Particle Size (mm)*	0.085
-------------------------------------	----------------------------	-------

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.52

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

Laboratory Coordinator **Authorised Signatory**

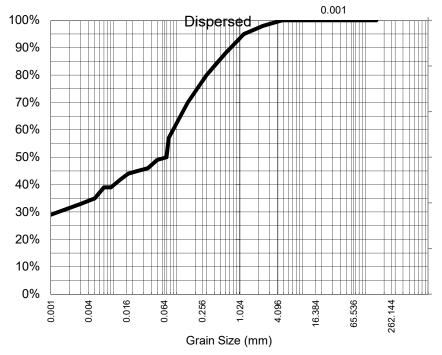
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-010 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 32 (0-0.5)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Test Method:

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	98%
1.18	95%
0.600	88%
0.425	84%
0.300	80%
0.150	70%
0.075	57%
Particle Size (microns)	
49	49%
35	46%
24	45%
17	44%
13	42%
9	39%
7	39%
5	35%
1	29%

0.069

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: Analysed: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.62

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

Median Particle Size (mm)*

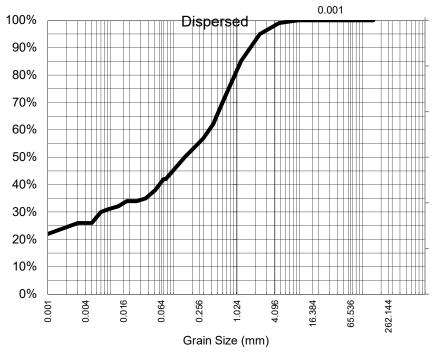
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-011 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 36 (0-0.5)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Test Method:

Samples analysed as received.

Particle Size (mm)	% Passing
9.50	100%
4.75	99%
2.36	95%
1.18	85%
0.600	70%
0.425	62%
0.300	57%
0.150	50%
0.075	42%
Particle Size (microns)	
51	38%
36	35%
26	34%
18	34%
13	32%
9	31%
7	30%
5	26%
1	22%

0.150

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.64

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

Median Particle Size (mm)*

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-012 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 36 (0.5-1.0)

Sediment Sampling

Particle Size Distribution

Ana	lysis	Notes

Test Method:

Samples analysed as received.

Particle Size (mm)	% Passing
19.0	100%
9.50	94%
4.75	93%
2.36	90%
1.18	80%
0.600	63%
0.425	56%
0.300	52%
0.150	45%
0.075	39%
Particle Size (microns)	
51	34%
36	33%
26	33%
18	32%
13	31%
9	31%
7	29%
5	26%
1	23%

Median Particle Size (mm)* 0.257

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.63

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane

Laboratory Coordinator **Authorised Signatory**

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-013 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 36 (1.0-1.5)

Sediment Sampling

Particle Size Distribution

Ana	lysis	Notes

Test Method:

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	91%
0.425	87%
0.300	84%
0.150	80%
0.075	70%
Particle Size (microns)	
46	60%
32	57%
23	56%
17	51%
12	46%
9	44%
6	43%
5	39%
1	33%

Median Particle Size (mm)* 0.016

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.66

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator
Authorised Signatory

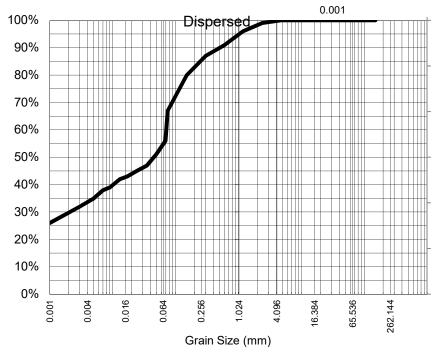
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-014 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 33 (0-0.5)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	96%
0.600	91%
0.425	89%
0.300	87%
0.150	80%
0.075	67%
Particle Size (microns)	
49	51%
35	47%
24	45%
17	43%
13	42%
9	39%
7	38%
5	35%
1	26%

0.046

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: Analysed: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.64

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Diana Plana

Median Particle Size (mm)*

Dianne Blane
Laboratory Coordinator

Authorised Signatory

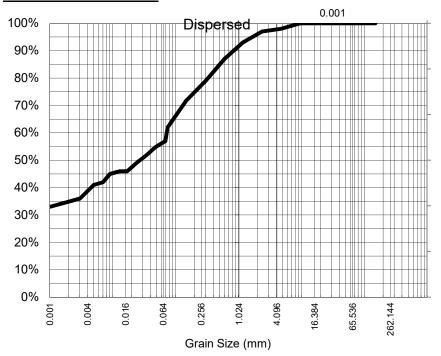
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-015 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 18 (0-0.5)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
9.50	100%
4.75	98%
2.36	97%
1.18	93%
0.600	87%
0.425	83%
0.300	79%
0.150	72%
0.075	62%
Particle Size (microns)	
49	55%
35	52%
24	49%
17	46%
13	46%
9	45%
7	42%
5	41%
1	33%

Median Particle Size (mm)* 0.028

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.63

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator
Authorised Signatory

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB1828853

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia

4053

 Telephone
 : -- Telephone
 : +61 7 3552 8662

 Facsimile
 : -- Facsimile
 : +61-7-3243 7218

Project : 301001.02018 - Port of Mackay Page : 1 of 3

BRISBANE QLD, AUSTRALIA 4000

Sediment Sampling

 Order number
 :
 Quote number
 : EB2018ADVISI0003 (BN/185/18)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site :

Sampler : NICHOLAS BAINTON

Dates

Date

Delivery Details

Mode of Delivery : Samples On Hand Security Seal : Not Available
No. of coolers/boxes : ---- Temperature : <6.0°C

Receipt Detail : REBATCH No. of samples received / analysed : 15 / 15

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- This work order has been created to rebatch samples from EB1823470 & EB1823888.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Analysis will be conducted by ALS Environmental, Newcastle, NATA accreditation no. 825, Site No. 1656.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.

Issue Date : 26-Nov-2018

Page

2 of 3 EB1828853 Amendment 0 Work Order Client : ADVISIAN PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessa tasks. Packages as the determina tasks, that are inclu- lf no sampling	ry for the executi may contain ad ation of moisture duded in the package. Itime is provided, the date of sampling date wi	ditional analyses, such content and preparation the sampling time will g. If no sampling date	SOIL - EA150H Particle Size Analysis by Hydrometer: AS1289	SOIL - EA151-10 Settleability 10%	SOIL - EA151-20 Settleability 20%	SOIL - EA152 Soil Particle Density for Hydrometer Analysis
EB1828853-001	24-Sep-2018 00:00	SB_40	✓	✓	✓	✓
EB1828853-002	24-Sep-2018 00:00	SB_50	✓	✓	✓	✓
EB1828853-003	24-Sep-2018 00:00	SB_58	✓	✓	✓	✓
EB1828853-004	26-Sep-2018 00:00	B1_07	✓	✓	✓	✓
EB1828853-005	26-Sep-2018 00:00	B5_08	✓	✓	✓	✓
EB1828853-006	25-Sep-2018 00:00	TB_05 (T1)	✓	✓	✓	✓
EB1828853-007	25-Sep-2018 00:00	TB_12	✓	✓	✓	✓
EB1828853-008	25-Sep-2018 00:00	TB_26	✓	✓	✓	✓
EB1828853-009	25-Sep-2018 00:00	H-3	✓	✓	✓	✓
EB1828853-010	28-Sep-2018 00:00	OP2_32 (0-0.5)	✓	✓	✓	✓
EB1828853-011	28-Sep-2018 00:00	OP2_36 (0-0.5)	✓	✓	✓	✓
EB1828853-012	28-Sep-2018 00:00	OP2_36 (0.5-1.0)	✓	✓	✓	✓
EB1828853-013	28-Sep-2018 00:00	OP2_36 (1.0-1.5)	✓	✓	✓	✓
EB1828853-014	28-Sep-2018 00:00	OP2_33 (0-0.5)	✓	✓	✓	✓
EB1828853-015	26-Sep-2018 00:00	OP2_18 (0-0.5)	✓	✓	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 26-Nov-2018

Page : 3 of 3
Work Order : EB1828853 Amendment 0
Client : ADVISIAN PTY LTD

Requested Deliverables

ΛI	EY	KΩ	CHV	IIEFF
ΑI	ᆫᆮᄉ	Nυ	ษทา	исгг

- *AU Certificate of Analysis - NATA (COA)	Email	alex.kochnieff@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	alex.kochnieff@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	alex.kochnieff@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	alex.kochnieff@advisian.com
- Attachment - Report (SUBCO)	Email	alex.kochnieff@advisian.com
- Chain of Custody (CoC) (COC)	Email	alex.kochnieff@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	alex.kochnieff@advisian.com
- EDI Format - XTab (XTAB)	Email	alex.kochnieff@advisian.com

BILL BOYLSON

- *AU Certificate of Analysis - NATA (COA)	Email	bill.boylson@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	bill.boylson@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bill.boylson@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bill.boylson@advisian.com
- A4 - AU Tax Invoice (INV)	Email	bill.boylson@advisian.com
- Attachment - Report (SUBCO)	Email	bill.boylson@advisian.com
- Chain of Custody (CoC) (COC)	Email	bill.boylson@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	bill.boylson@advisian.com
- EDI Format - XTab (XTAB)	Email	bill.boylson@advisian.com
NICHOLAS BAINTON		

NICHOLAS BAINTON		
- *AU Certificate of Analysis - NATA (COA)	Email	nicholas.bainton@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	nicholas.bainton@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	nicholas.bainton@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nicholas.bainton@advisian.com
- Attachment - Report (SUBCO)	Email	nicholas.bainton@advisian.com
- Chain of Custody (CoC) (COC)	Email	nicholas.bainton@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	nicholas.bainton@advisian.com
- EDI Format - XTab (XTAB)	Email	nicholas.bainton@advisian.com
STEPHEN NEALE		
*ALL Certificate of Analysis - NATA (COA)	Fmail	stenhen neale@advisian.com

- *AU Certificate of Analysis - NATA (COA)	Email	stephen.neale@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	stephen.neale@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	stephen.neale@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	stephen.neale@advisian.com
- Attachment - Report (SUBCO)	Email	stephen.neale@advisian.com
- Chain of Custody (CoC) (COC)	Email	stephen.neale@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	stephen.neale@advisian.com
- EDI Format - XTab (XTAB)	Email	stephen.neale@advisian.com

From: Kochnieff, Alex (Brisbane) [mailto:ALEX.KOCHNIEFF@advisian.com]

Sent: Thursday, 22 November 2018 1:06 PM To: Caroline Hill < caroline.hill@ALSGlobal.com>

Subject: EB1823470, EB1823888 -

Good afternoon Caroline,

As discussed, we require additional PSD and settling rate analysis on the following samples:

Workorder	ALS sample #	Volume Remaining			Advisian Sample ID
		250mL Soil Jar	ASS Bag	Porewater Bag	Units
EB1823470	5	1	1		LOR
EB1823470	7	2	2	-	SB_40
EB1823470	9	2.5	1	-	SB_50
EB1823470	16	1	2		SB_58
EB1823470	19	1.5	1	-	B1_07
EB1823470	24	1.75	2	-	B5_08
EB1823470	27	1.75	2	-	TB_05 (T1)
EB1823470	29	2.75	3	1	TB_12
EB1823470	35	0.5		1	TB_26
EB1823470	39	3.5	2	-	REF_03
EB1823888	9	2-3		-	H-3
EB1823888	13	2-3	Maybe 1	Unknown	OP2_32 (0-0.5)
EB1823888	14	2-3	Maybe 2	Unknown	OP2_36 (0-0.5)
EB1823888	15	2-3	Maybe 2	Unknown	OP2_36 (0.5-1.0)
EB1823888	16	2-3	Maybe 2	Unknown	OP2_36 (1.0-1.5)
EB1823888	19	3	1	Unknown	OP2_33 (0-0.5)
		3	Maybe 1	Unknown	OP2_18 (0-0.5)

Please let me know if this is possible.

Kind regards,

Alex Kochnieff

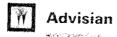
Senior Environmental Engineer

Level 31, 12 Creek St | Brisbane City, QLD 4000

P +61 7 3319 3940 | **M** +61 468 660 301

E alex.kochnieff@advisian.com

www.advisian.com | Follow Advisian



Environmental Division

Work Order Reference

Brisbane

