

Marine Sediment Properties Report

Marine Sediment Properties Report

Port of Mackay

21/12/18

Level 31, 12 Creek St Brisbane QLD 4000 Australia

301001-02095-00-EN-REP-0002

Disclaimer

This report has been prepared on behalf of and for the exclusive use of North Queensland Bulk Ports, and is subject to and issued in accordance with the agreement between North Queensland Bulk Ports and Advisian.

Advisian accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party.

Copying this report without the permission of North Queensland Bulk Ports and Advisian is not permitted.

Project No: 301001-02095-00-EN-REP-0002 – Marine Sediment Properties Report

Rev	Description	Author	Review	Advisian Approval	Date
0	Original - Issued for use	A Kochnieff / A Keep	B Boylson	B Boylson	21/12/18

Table of Contents

Execu	utive su	ımmary	¹	1
	Geot	echnica	ıl testing	1
	Ceme	ent bind	der testing	2
	Geoc	hemica	ll testing	3
1	Intro	duction		4
	1.1	Purpo	ose	4
	1.2	Scope	e of work	4
	1.3	Guide	elines and standards	5
2	Previ	ous stu	dies	7
3	Site i	nforma	tion	9
	3.1	Locat	ion and environmental setting	9
	3.2	Geolo	ogy	9
	3.3	Land	use	10
4	Meth	od		12
	4.1	Gene	ral	12
	4.2	Samp	oling locations and intensity	12
	4.3	Field	method	20
	4.4	Labor	ratory methodology	22
		4.4.1	Geochemical analysis	22
		4.4.2	Geotechnical testing	22
		4.4.3	Cement Laboratory Testing	23
5	Resul	ts		24
	5.1	Gene	ral	24
	5.2	Physic	cal description	24

	5.3	Geoch	hemical results	24
		5.3.1	Acid Sulfate Soils	24
		5.3.2	Salinity and Organic Matter	27
	5.4	Geote	echnical testing	27
		5.4.1	Particle size distribution	27
		5.4.2	Organic content	28
		5.4.3	Carbonate (CaCO ₃) content	28
		5.4.4	Moisture content	33
		5.4.5	Atterberg limits and linear shrinkage	33
		5.4.6	Density	36
		5.4.7	Strength and consolidation	39
		5.4.8	Permeability	43
	5.5	Ceme	ent Laboratory Testing	45
6	Data \	/alidati	ion	47
	6.1	Labor	atory Analysis	47
7	Concl	usion		49
	7.1	Geote	echnical characteristics	49
	7.2	Ceme	ent binder characteristics	50
	7.3	Geoch	hemical Characteristics	51
8	Refere	ences		52
Tab	le Li	st		
Table 2	2-1: Sum	mary of	contaminant studies information relevant to this report	7
Table 4	I-1: Sam∣	pling an	d testing summary	14
Table 4	l-2 Field	activitie	S	20

Table 4-3: Summary of geotechnical testing	23
Table 4-4: Summary of cement laboratory testing	23
Table 5-1: General field description of sediments observed during sampling	24
Table 5-2: Definition of group symbols used in soil classification (reproduced from Tables 9 at of AS 1726-2017)	
Table 5-3: Summary of particle size distribution and carbonate content test results	30
Table 5-4: Estimated dredge volumes based on average Particle Size Distribution by area	33
Table 5-5: Summary of moisture content and plasticity test results	34
Table 5-6 Summary of density test results	38
Table 5-7 Summary of direct shear test results	40
Table 5-8 Summary of CU triaxial test results	40
Table 5-9 Summary of Oedometer test results	42
Table 5-10 Summary of permeability test results	44
Table 5-11 XRD testing results	46
Table 5-12: XRF testing results	46
Table 6-1 QA/QC laboratory outliers summary table	48
Table of Figures	
Figure 1-1: Project locality	6
Figure 3-1 Geology of Mackay Sheet 8755, scale 1:100,000 (DNRMW, 2006)	10
Figure 4-1: Sampling locations – Channel and Swing Basin	16
Figure 4-2: Sampling locations – Berth Pockets	17
Figure 4-3: Sampling locations - Tug Berth	18
Figure 4-4: Sampling locations – Operational Area 2	19
Figure 5-1: Particle Size Distribution (gravel / sand / fines proportions) by sample location	31
Figure 5-2: Average Particle Size Distribution (gravel / sand / fines proportions) by area	32

Figure 5-3: Plasticity chart showing results of Atterberg limits testing	. 35
Figure 5-4: Bulk density vs. fines content	. 39
Figure 5-5 Time required for drainage (reproduced from Look, 2007)	. 43

Appendix List

Appendix A Field Survey Sheets and Logs

Appendix B Summary of ASS results

Appendix C ALS Laboratory documentation

Appendix D Trilab laboratory documentation

Appendix E Wagners laboratory documentation

Executive summary

The purpose of this investigation was to identify and classify marine sediment materials and investigate their acid generating capacity and geotechnical properties for subsequent consideration of potential beneficial reuse options. The investigation included sampling and analysis of sediments from locations within Port of Mackay navigational areas.

Geotechnical testing

The geotechnical testing was undertaken using a phased approach. Phase 1 comprised general classification testing to determine characteristics such as particle size, moisture content, organic content, carbonate content and plasticity. From the field samples taken, 10 samples were selected for Phase 1 geotechnical analysis to ensure adequate coverage across the range of material types observed within the Port. Phase 2 testing was undertaken on a subset of samples which were selected for analysis based on the Phase 1 results, and to assess more detailed engineering properties including permeability, density, strength and consolidation.

The particle size distribution (PSD) testing (by sieve and hydrometer) was used in combination with the plasticity test results (Atterberg limits testing) to enable classification of the sediment based on Australian standards for geotechnical site investigations. The sediments encountered were predominantly fine-grained (silt/clay), with only two of the sampling locations (both within the Swing Basin and Channel area) being classified as coarse-grained soil (sand / silty sand). The fines contents at these two sites were 8% and 22%, while for all other sites the fines contents ranged from 44% to 98%, with an average fines content of 74%. The analysis by hydrometer indicated that silt and clay proportions within the sediments are approximately equal; however, the results of Atterberg limits testing show that the materials will behave in a predominantly clay-like manner.

The plasticity of the fine-grained soils at the Port was typically very high, and these sediments generally have "very high" potential for volume change. For all fine-grained samples tested, the moisture contents were found to be higher than the corresponding liquid limits, indicating these in-situ sediments are likely to be sensitive e.g. some of the fine-grained sediments may be stable in an undisturbed state but a sudden change in stress may transform them into a liquid state.

The organic content test results suggest that the fine-grained sediments at the Port include a combination of organic and inorganic materials, with organic soils being more prevalent within the Berth Pockets and Tug Berths.

The carbonate content testing indicated a range of results between 2% and 10%. Based on this, the sediments may be generally considered as "calcareous soils".

The sediment particle densities (effectively equivalent to specific gravity) ranged from 2.40 t/m³ to 2.77 t/m³ across the Port with an average of 2.59 t/m³. The particle densities and the associated moisture content results were used to approximate the in-situ bulk density of the geotechnical samples using phase relationships. The results of this estimation show a clear trend of decreasing

in-situ density with an increase in fines content and suggest that in-situ bulk densities across the majority of the site fall within the range of 1.2 t/m³ to 1.6 t/m³.

Standard compaction testing was undertaken on the combined Berth Pockets sample to provide an indication of the maximum dry density (MDD) that may be achieved during potential placement of the dredged fine-grained sediments, and the optimum moisture content (OMC) required to achieve this density. The test resulted in a MDD of 1.45 t/m³ and an OMC of 23.3%, which corresponds to a bulk / wet density of 1.79 t/m³.

Minimum / maximum dry density testing was performed on the silty sand sample from the area of the port entrance. The results suggest that the placed dry density of this material may fall in the range of 1.14 t/m³ to 1.62 t/m³ depending on the level of compaction or method of placement utilised onshore. Direct shear testing performed on this silty sand sample indicates that this material may achieve a friction angle of approximately 36° after compaction and loading. This value is within the lower end of the range generally associated with a "dense" sand deposit and suggests that the coarse-grained sediments in this area may be suitable for medium loading applications following adequate compaction.

CU triaxial testing was performed on two fine-grained (clay) samples and the results indicate average cohesion (c') values of 3 kPa to 5 kPa and average friction angles (ϕ ') of 25° to 35° following compaction and loading. These strengths suggest that the fine-grained sediments may be suitable for low to medium loading applications following adequate drying out and compaction (noting that fine-grained material typically requires a long time to adequately drain and consolidate), with the lower end of this range applicable to those locations with highly plastic, organic sediments (e.g. Berth Pockets).

Consolidation testing was also undertaken on the two clay samples and the results indicate that, in general, the fine-grained sediments at the Port may be expected to exhibit coefficient of consolidation (c_v) values ranging from approximately 1 m²/yr to 100 m²/yr, which is within the typical range expected for clays and silts. Some of these materials may take many months to many years to consolidate, depending on the level of compaction and drainage path length, although it is noted that consolidation times can vary significantly and can be better estimated by undertaking field trials (e.g. trial embankment with wick drains and surcharge).

The permeability test results were generally within the range expected for the types of sediments tested, with "poor" drainage characteristics being reported for the two clay samples and "good" drainage characteristics for the silty sand sample.

Cement binder testing

Cement laboratory testing results indicate that:

 All three samples were shown in the XRD test to be almost 100% in crystalline mineral form, chiefly quartz. These materials would not chemically react with other materials to create a geopolymer cement in their current form.

- The XRF analyses also showed the presence of significant levels of iron and calcium which would further interfere with any geopolymer reactions.
- As expected for coastal marine sediments, significant levels of alkalis (Na₂O & K₂0) and chlorides were also detected.

Geochemical testing

Based on the Acid Sulfate Soils (ASS) analysis, Potential Acid Sulfate Soils (PASS), in concentrations greater than the relevant (QASSIT) action criteria was detected in all samples analysed. Notwithstanding this, Acid Neutralising Capacity was detected in all samples submitted for ASS analysis, with concentrations sufficient to negate acidity. This acid buffering potential is expected to arise from the presence of carbonate within the sediments. As such, the marine sediments are unlikely to require treatment through neutralisation (e.g. using lime) dependent on the dredging and management methods applied.

All samples are considered highly saline. If sediments are placed on land without treatment, salinity will degrade the quality of terrestrial soils and may impact the quality of receiving waters. Organic Material (OM) (ranging from 1 to 5.9%) was reported for all samples analysed. This is considered inadequate to support plant growth. The highest OM (generally greater than 3%) was detected in finer textured samples with sand components less than 30%.

1 Introduction

North Queensland Bulk Ports Corporation (NQBP) has commenced work on a strategic assessment for ongoing management of marine sediments at the Port of Mackay (Figure 1-1) known as the *Port of Mackay - Sustainable Sediment Management (SSM) Assessment for Navigational Maintenance* ('The SSM Project'). As part of the SSM Project, NQBP commissioned Advisian to assess the properties of marine sediment that naturally accumulate in the navigational areas of the Port of Mackay (maintenance material) and undertake an investigation of options for beneficial reuse of the marine sediments.

Advisian's work for the SSM project has been undertaken as a two-stage approach:

- A sampling and analysis program to assess the geotechnical engineering, Acid Sulfate Soil (ASS), salinity and organic matter of marine sediments recently deposited within the navigational areas of the Port of Mackay.
- 2. Comprehensive identification and analysis of beneficial reuse options for the maintenance material marine sediments.

This report provides a description of the works undertaken to complete the first stage of the program and the associated results as a factual report of marine sediment properties for the maintenance material.

1.1 Purpose

The purpose of the marine sediment properties assessment is to identify and classify marine sediment materials and to investigate their acid generating capacity, salinity, organic matter and geotechnical properties to facilitate subsequent consideration of potential beneficial reuse options.

1.2 Scope of work

The marine sediment properties assessment scope of works included the following:

- Review of historical acid sulfate and geotechnical information pertaining to the sampling areas
- Collection of sediment grabs and core samples from locations across Port of Mackay dredge areas including Channel and Swing Basin, Berth Pockets, Tug Berth (incorporating Operational Area 1) and Operational Area 2 (i.e. new tug berths)
- Description (logging), photographing and collection of sediment samples and subsequent dispatch to laboratory for analysis and testing
- Laboratory analysis of ASS, geotechnical properties, salinity and organic matter of the marine sediment
- Summary and tabulation of the results of the laboratory analysis and testing
- Preparation of this marine sediment properties report.

1.3 Guidelines and standards

The Department of Environment and Science (DES) is the custodian of comprehensive guidelines for ASS management, sampling and analysis. These guidelines also provide technical and procedural advice to avoid environmental harm and achieve best practice environmental management. They include:

- Queensland Acid Sulfate Soil Technical Manual Legislation and Policy Guide, version 2.2 (Dear et al., 2004)
- Guidelines for Sampling and Analysis of Lowland Acid Sulfate Soils in Queensland 1998, version 4.0 (Ahern et al., 1998)
- Queensland Acid Sulfate Soil Technical Manual Soil Management Guidelines, 2002, version 3.8 (Dear et al., 2002)
- Queensland Acid Sulfate Soil Technical Manual Acid Sulfate Soils Laboratory Methods Guidelines, 2004, version 2.1 (Ahern et al., 2004).

In addition to the above the following guidelines and standards were used to inform the sediment assessment method for geotechnical assessment:

Australian Standard (AS) 1726-2017: Geotechnical site investigations.

Port of Mackay Sediment Investigation

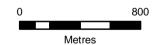
Figure 1-1: Location of the Port of Mackay and the navigational areas associated with the Port

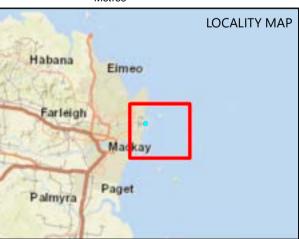
LEGEND

Berths and operational areas

Swing basin

Existing DMPA


///, 2018 Dredge area


Source Information:
Port facility layout and dredge area
Provided by NQBP - Sept 2018
Imagery - Web Service
Dept of Natural Resources and Energy

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:25,000

sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community

2 Previous studies

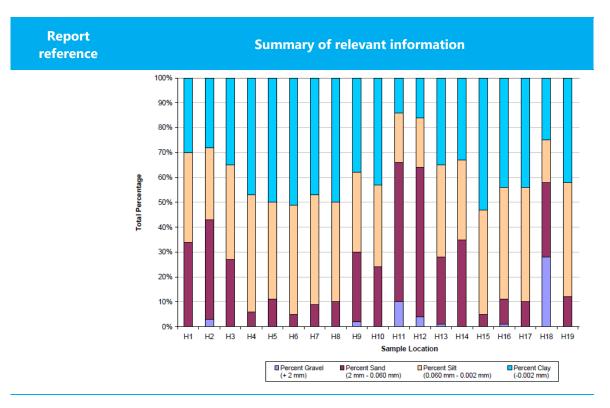
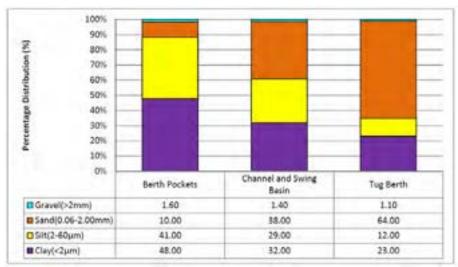

Several sediment contamination surveys for dredging operations in the Port of Mackay have been conducted over the past 11 years including studies from 2007, 2009 and 2013. These investigations have typically focused on potential contaminants in accordance with the National Assessment Guidelines for Dredging (NAGD, 2009) or previously applied guidelines (National Ocean Disposal Guidelines for Dredged Material, 2002). These studies have also included some geotechnical and geochemical analysis consisting of Particle Size Distribution (PSD) and ASS analysis. These components are relevant to the current assessment and are summarised in Table 2-1.

Table 2-1: Summary of contaminant studies information relevant to this report

Report reference	Summary of relevant information
WorleyParsons, 2007. Mackay Port Authority: Port of Mackay Harbour – Sediment Quality Assessment	The 2007 results indicated that sediments within the Channel and Swing Basin dredge area are dominated by equal portions of silt and clay fractions with some sites also containing minimal fine to medium sand particles.
WorleyParsons, 2010. NQBP Mackay Harbour and Spoil Ground 2009 Sediment Characterisation	ASS testing was completed using the Suspension Peroxide Oxidation – Combined Acidity and Sulfate (SPOCAS) suite on four grab samples collected at a depth of 0.0-0.1m from the Berth Pockets: Berth 1, Berth 4, Berth 5 and Operational Area 1 adjacent to the Tug Berths. The results of the analysis indicated samples had no actual acidity, but contained potential acidity (a-SPOS) ranging from 135 moles H+/t to 227 moles H+/t. This is above the QASSIT guideline of 18 moles H+/t, however, samples contained sufficient Acid Neutralising Capacity (ANC) so that net acidity was below the laboratory limit of reporting (LOR) (i.e. no lime or treatment is required to neutralise sulfidic acidity).
Report, document number 301001- 00797-00-EN-REP- 0001	PSD data was collected for the Channel and Swing Basins (including operational area 1) and Berth 1. The results are presented in the graph below. These indicate that sediments primarily comprise clay and silt, however, samples H1, H2, H9, H10, H12, H13, H14 and H18 (all located within the Channel and Swing Basin) and H11 (Operational Area 2) had more than 20% sand. Sample H18 also had more than 20% gravel and was located in the southwest corner of the Swing Basin near the Tug Berths.



PSD data was collected for the Channel and Swing Basin, Berth Pockets, and Tug Berth. The results are presented in the graph below. This indicates the Berth Pockets primarily comprise silt and clay. The channel and swing basin also primarily comprise silt and clay but have a greater proportion of sand. This is consistent with the 2009 results. The Tug Berth primarily comprises sand, but still has a high proportion (i.e. >30%) of fines (i.e. silt and clay).

Golder Associates (2013). 2013 Maintenance Dredging – Sediment Characterisation Report. Report prepared for North Queensland Bulk Ports

3 Site information

3.1 Location and environmental setting

The Port of Mackay is operated by NQBP and is situated approximately four kilometres north of the Pioneer River mouth at North Mackay, on the central Queensland coast. The Port commenced operations in 1939 and has continued to develop and grow since this time. There are four operational berths and associated loading/unloading facilities. The Port is located within the Great Barrier Reef World Heritage Area but falls outside of the Great Barrier Reef Marine Park. Multiple commodities pass through the Port facilities, including petroleum, bulk molasses and sugar cane, bulk raw and refined sugar, tallow, ethanol, liquid chemicals, bulk fertilisers, iron concentrates, bulk grain and general cargo. Sugar and sugar products are the major commodities exported, and petroleum (for mining and associated activities in Central Queensland) is the major imported commodity for the Port. As well as major trade items, the Port also provides access to a small craft harbour with tourist terminal, marina amenities and public access.

NQBP conducts maintenance dredging within the Port to maintain declared depths within the Channel, Swing Basin and Berth areas. Sedimentation of the port occurs naturally and is caused by the transportation of sediment from ocean currents, swell and tides, and cyclonic activity. These sediments require periodic removal from the navigational areas to maintain safe and efficient operational depths.

As set out in the Port's Long-Term Dredge Management Plan (LTDMP) (WorleyParsons, 2010), there are potentially four major dredge programs within the current 10-year dredging approval with each program removing an estimated 130,000 m³ of material. Minor dredge programs are scheduled annually between major programs as part of the routine maintenance dredging program with each removing approximately 10,000 m³ of material. The next major program is scheduled to be conducted in 2019 or 2020. The dredge material is placed at the approved Dredge Material Placement Area (DMPA) approximately 3km north-east of the Port entrance as per the conditions set out in the port's current approval.

3.2 Geology

Port of Mackay geology has been mapped by the Department of Natural Resources Mines and Water, 2006 as the 1:100,000 Mackay Sheet 8755. A portion of this map relevant to the Port is provided as Figure 3-1. As the Port itself is subtidal it has not been mapped, however, a cross section cut north of the Port indicates Early Permian age basement rock beneath the Site.

As Mackay is a mosaic of parent material, several units may contribute to the deposited sediments within the Port. These are summarised below.

- Qhd: Quaternary, Holocene High blown-out dune sand
- Qhe_s: Quaternary, Holocene Sand, muddy sand, mud and minor gravel; estuarine channels and intertidal sand banks and flats

- Qhh: Quaternary, Holocene Gravel, sand and mud: man-made deposits associated with landfill
- Pcs: Early Permian: Lizzie Creek Volcanic Group Carmila beds Siltstone and mudstone, volcanolithic sandstone and conglomerate; minor altered basalt and local interbedded rhyolitic to dicitic volcanic rocks; minor coal; plant fossils locally abundant; very weak magnetic domain
- Kw: Whitsunday Volcanics: Rhyolitic to andesitic volcaniclastic rocks, including ignimbrite, minor flows, conglomerate and sandstone.

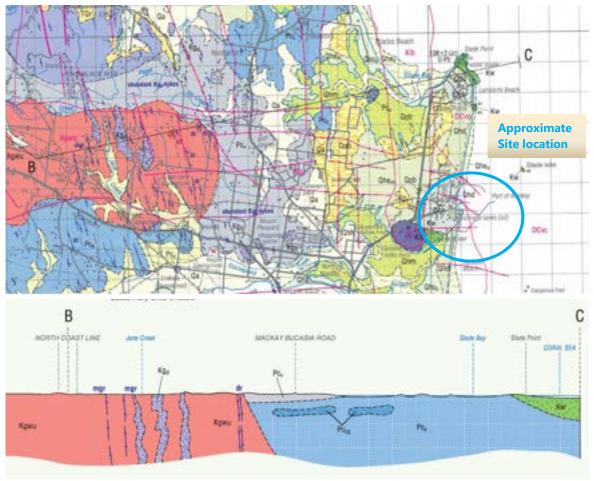


Figure 3-1 Geology of Mackay Sheet 8755, scale 1:100,000 (DNRMW, 2006)

3.3 Land use

The main land uses in the Mackay region include:

- Forest land
- Urban land associated with Mackay and surrounding townships

- Port activities at the Port of Mackay including shipping of multiple commodities, small craft harbour with tourist terminal, marina amenities and public access
- Agriculture primarily consisting of growing sugar cane, with cattle grazing being the second major activity on land not suitable to growing sugar cane and minor dairy farming and cropping (pineapples, melons and tomatoes) also undertaken (Holz and Shields, 1985)
- Quarrying
- Tourist activities including boating and fishing.

4 Method

4.1 General

The marine sediment properties assessment consisted of two components:

- 1. Assessment of existing information, preselection of sampling location and development of a sampling plan
- 2. Assessment of marine sediments including a sampling program.

The latter included grab sampling at several locations within the Channel and Swing Basin, Berth Pockets and Tug Berth, and piston core sampling within Operational Area 2. Sampling was focused on understanding the geotechnical engineering, ASS and nutrient properties of the marine sediments.

4.2 Sampling locations and intensity

The number of sampling locations was determined as a pilot study using Table 6 (Minimum number of sampling locations) of the NAGD, 2009. Although the NAGD focuses on contaminant studies, it provides a robust framework for sample program design (based on potential dredge volumes) and ensures a consistent approach with previous studies completed. Based on the NAGD approach, the sampling locations were randomly assigned within each dredge area with samples generally containing a high percentage of fines (i.e. clay and silt) selected for ASS analysis. Samples collected for geotechnical testing were selected based on an approximately even spatial distribution across each navigational area at an overall rate of one geotechnical sample (each approximately 5-8kg in weight) per three contaminant samples (noting that contaminant sampling was undertaken concurrently and is reported separately).

All total of 30 sites were sampled for environmental purposes (PSD and contamination), including:

- Eight locations in the Swing Basin and Channel
- Six locations in the Berth Pockets
- Six locations in the Tug Berth (incorporating Operational Area 1)
- Ten locations in Operational Area 2.

The contaminant analysis results are summarised in the *Port of Mackay Sediment Characterisation Report* (Advisian, 2018).

A subset of the environmental sampling locations was sampled for ASS, salinity, organic matter and geotechnical properties. The total number of ASS, nutrient and geotechnical sampling locations was 18. This number of locations is considered an appropriate intensity for the ASS, nutrient and geotechnical components of this study.

Sediment samples from three sites (one from the Tug Berth and two from the Channel and Swing Basin) were chosen for testing of potential use for cement-related purposes. A summary of the sampling locations, types and co-ordinates is provided in Table 4-1 and the test locations are shown in Figure 4-1 to Figure 4-4.

Table 4-1: Sampling and testing summary

							Testing Undertake	n				Sampling loca	ntion co-ordinates	
Area	Sample ID Depth (Depth (m)	Sample Method	Contamination	Particle Size Distribution	Acid Sulfate Soils	Salinity, organic matter	Geotechnical Phase 1	Geotechnical Phase 2	Cement Testing	Easting (MGA55)	Northing (MGA55)	Longitude (GDA94)	Latitude (GDA94)
	B1_02 T1	0.0-0.15	G	Х	Х	Х	Х							
	B1_02 T2	0.0-0.15	G	Х	Х						731554	7664151	149.2292063	-21.10913246
	B1_02 T3	0.0-0.15	G	X	X				.,					
	B1_07	0.0-0.15	G	X	Χ			X	Х		731404	7664191	149.2277577	-21.1087903
Berth Pockets	B3_14	0.0-0.15	G	X	X	X	Х	X	X		731293	7664470	149.2266582	-21.10629166
Dertii i ockets	B4_01	0.0-0.15	G	X	X	Х	X	X	X		731156	7664516	149.2253334	-21.10589074
	B5_08	0.0-0.15	G	Х	Х	Х	Х				731541	7664783	149.2289968	-21.10342928
	B5_10	0.0-0.15	G	Х	Х			Х	Х					
	B5_10 D3	0.0-0.15	G	X							731341	7664808	149.2270692	-21.10322886
	B5_10 D4	0.0-0.15	G	Х										
	SB_02 T1	0.0-0.15	G	X	X						4			
	SB_02 T2	0.0-0.15	G G	X	X X						731410	7664228	149.2278109	-21.10845956
	SB_02 T3 SB_02A	0.0-0.15 0.0-0.15	G	Χ	X					Χ	-			
	SB_16	0.0-0.15	G	Х	X			Х			731635	7664358	149.2299582	-21.10725736
		0.0-0.15	G	X				X			731485	7664553		
Swing Basin and	SB_40				X				V			_	149.2284887	-21.10551575
Channel	SB_45	0.0-0.15	G	X	Х	Х	Х	Х	Х	Х	731860	7664553	149.2320967	-21.10546827
	SB_50	0.0-0.15	G	X	X						731035	7664618	149.2241503	-21.10498576
	SB_52	0.0-0.15	G	X	X	Х	Х				731185	7664618	149.2255935	-21.10496682
	SB_58	0.0-0.15	G	Х	Χ	X	Х				731635	7664618	149.2299231	-21.10490991
	SB_79	0.0-0.15	G	Х										
	SB_79 D1	0.0-0.15	G	Х							731410	7664748 149.2277408	149.2277408	-21.10376465
	SB_79 D2	0.0-0.15	G	X										
	TB_02	0.0-0.15	G	X	X						731182	7664202	149.2256212	-21.10872646
	TB_05	0.0-0.15	G		X			X		Χ			7664202 149.2264871	-21.10871509
	TB_05 T1	0.0-0.15	G	Х	Х						731272	7664202		
	TB_05 T2	0.0-0.15	G	X							_			
	TB_05 T3	0.0-0.15	G	X										
Tug Berth	TB_12	0.0-0.15	G	X	Х						731332	7664222	149.2270617	-21.10852693
	TB_18	0.0-0.15	G	X	Х						731212	7664262	149.2259018	-21.10818095
	TB_26	0.0-0.15	G	X	X	Х	X				731302	7664282	149.226765	-21.107989
	TB_29	0.0-0.15	G	X	X									
	TB_29 D5	0.0-0.15	G	X							731242	7664302	149.226185	-21.10781601
	TB_29 D6	0.0-0.15	G	X					V					
	OP2_18	0.0-0.5	PC	X	X	Х	Х	Х	Х		731758	7664758	149.2310908	-21.10363187
	OP2_24	0.0-0.5	PC		Х			Х			731730	7664786	149.23081764200	21.1033826179
	OP2_21	0.0-0.5	PC	X	X						731646	7664786	149.2300095	-21.10339325
Operational Area 2	OP2_32	0.0-0.5	PC	Х	Х	Х	Х				731730	7664814	149.2308139	-21.10312982
	OP2_33	0.0-0.5	PC	Х	Х									
	OP2_33 D7	0.0-0.5	PC	X							731534	7664842	149.2289243	-21.10290182
	OP2_33 D8	0.0-0.5	PC	Х										

					Testing Undertaken						Sampling location co-ordinates				
Area	Sample ID	Depth (m)	Sample Method	Contamination	Particle Size Distribution	Acid Sulfate Soils	Salinity, organic matter	Geotechnical Phase 1	Geotechnical Phase 2	Cement Testing	Easting (MGA55)	Northing (MGA55)	Longitude (GDA94)	Latitude (GDA94)	
	OP2_36	0.5-1.0	PC	X	Х	Х	Х								
	OP2_36	1.0-1.5	PC	Х	Χ	Х	Х								
	OP2_38 T1	0.0-0.5	PC	Х	Х						731674	7664842	149.2302713	-21.1028841	
	OP2_38 T2	0.0-0.5	PC	Х	Χ										
	OP2_38 T3	0.0-0.5	PC	Х	Χ										
	OP2_42	0.0-0.5	PC	X	Χ							7664870	149.2294593	-21.10264193	
Operational Area 2	OP2_42	0.5-1.0	PC	X	Χ						731590				
	OP2_42	1.0-1.5	PC	Х	Χ										
	OP2_44	0.0-0.5	PC	Х	Х						721646	7664070	140 2200001	21 10262405	
	OP2_44	0.5-1.0	PC	X	Χ						731646	7664870	149.2299981	-21.10263485	
	OP2_45	0.0-0.5	PC	Х	Х										
	OP2_45	0.5-1.0	PC	X	X						731674	7664870	149.2302675	-21.1026313	
	OP2_45	1.0-1.5	PC	X	Χ										

MGA55: Map Grid of Australia, Zone 55

GDA94: Geocentric Datum of Australia

G: Grab sample PC: Piston Core

Figure 4 1: Sampling locations – Channel and Swing Basin

LEGEND

• Fixed sampling location

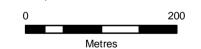
Sediment sampling location

Geotech and sediment sampling location

Sampling grid

Berths and operational areas

Swing basin


Swing basin and channel dredge area

Source Information:
Port facility layout
Provided by NQBP - Sept 2018
Imagery - Aug 2017
Provided by NQBP - Sept 2018

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:5,000

Sources: Esri, HEKE, Garmin, USGS, Intermap, INCKEMEN I P, NRCan, Esri Japan, ME11, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap contributors, and the GIS User Community

Figure 4 2: Sampling locations – Berth Pockets

LEGEND

Sediment sampling location

Geotech and sediment sampling location

Sampling grid

Berths and operational areas

🖊 Berth pocket dredge area

Source Information: Port facility layout Provided by NQBP - Sept 2018 Imagery - Aug 2017 Provided by NQBP - Sept 2018

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd © State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:3,500

> 0 25 50 75 100 Metres

ources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong iong). Esri Korea. Esri (Thailand). NGCC. © OpenStreetMap contributors. and the GIS User Community

Figure 4 3: **Sampling locations -Tug Berth**

LEGEND

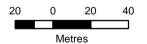
Sediment sampling location

Geotech and sediment sampling location

Sampling grid

Berths and operational areas

Tug berth pocket dredge area


Source Information: Port facility layout Provided by NQBP - Sept 2018 Imagery - Aug 2017 Provided by NQBP - Sept 2018

While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd

© State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:2,000

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong

Figure 4 4: Sampling locations – Operational Area 2

LEGEND

Sediment sampling location

Geotech sampling location

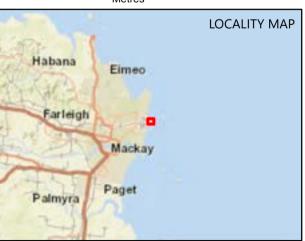
Geotech and sediment sampling location

Sampling grid

Operational area 2 dredge area

Berths and operational areas

Source Information: Port facility layout Provided by NQBP - Sept 2018 Imagery - Aug 2017 Provided by NQBP - Sept 2018


While every care is taken to ensure the accuracy of this data, WorleyParsons makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which might be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

© Advisian Pty Ltd

© State of Queensland 2018

Coordinate System: GDA 1994 MGA Zone 55 Scale at A3 - 1:2,500

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC. © OpenStreetMap contributors, and the GIS User Community.

4.3 Field method

Field sampling procedures, conforming to *Appendix F Field and laboratory quality assurance and quality control* of the NAGD (2009) and Advisian's Quality Assurance / Quality Control (QA/QC) protocols, were carried out to minimise the potential for cross contamination and preserve the sample integrity. Table 4-2 provides a summary of the sediment sampling activities undertaken.

Table 4-2 Field activities

Activity	Details
Sampling locations	The co-ordinates of the sampling locations were uploaded onto a Garmin 76CSx Global Positioning System (GPS) unit with an accuracy of +/-5m. The Garmin was used to navigate to the locations and if required, also reposition the locations due to site conditions.
	Grab Sampling: Samples collected using a boat deployed van Veen grab sampler were located in Channel and Swing Basin, Berth Pockets and the Tug Berth. The grab sampler is constructed of stainless steel with an approximate grab payload of 5kg. Using a pulley system, the grab sampler was deployed from the boat and lowered to the sea floor where it would trigger shut and capture sediments ranging in depth from 10-15cm. Once collected the sample, the grab sampler was then lifted back to the surface where it was opened and sediments placed directly into stainless steel mixing bowls for processing.
Sediment sampling and horizon	Piston coring: Samples collected using a boat-deployed stainless-steel piston corer were located in Operational Area 2. The piston corer was constructed of stainless steel with an internal barrel length of 2.2m and internal diameter of 62mm. The corer was lowered over the side of the vessel to the seabed using extension rods to collect a sediment core to a maximum depth of 2.2m or until refusal, whichever occurred first. Once a sediment core had been collected, the piston corer was retrieved to the surface and extruded manually into a plastic core tray for core logging and then directly into stainless steel mixing bowls for sample processing (i.e. homogenisation).
Location log	The following information was recorded at each sampling location and presented in Appendix A: Name of client Sampling date General location of sample collection Sample identifiers assigned Name of the sample collector Type of sampler used

Activity	Details
	 Weather conditions at the time of sampling Sea state at time of sampling General comments (e.g. Wind speed, level of shipping etc.) GPS location (easting and northing) Time of sampling Water depth Photograph of sediment sample
	A sediment log (Appendix A) was recorded for each location on a field data sheet, providing a description of the texture and composition of each sample, including the following information
Sediment log	 Colour Sediment field texture Observed sand grain size Consistency Moisture content of sample (e.g. wet, moist, dry) Percentage of stones Presence of shell/shell grit Odour (e.g. marine, sulphurous)
Sediment sampling & storage	Samples were homogenized in stainless-steel mixing bowls using powderless nitrile gloved hands. Homogenised sediment material was then placed into laboratory supplied 250ml glass jars leaving zero head space (for salinity and organic matter) and into zip lock bags (for ASS and PSD) and large geotechnical sampling bags (for phase 1 and 2 tests). Label information was completed on each sample container and the containers were stored on ice in eskies.
Labelling	Sample bags and jars were labelled with the date, the abbreviated project location (Mackay), the location number / depth, sampler's initials, date and time of sampling. For instance, a sample collected at SB02 at a depth of 0.0-0.5m was labelled as follows: SB02 GRAB (sample I.D) NB (initials of sampler) 24/09/18 (date sampled)
Decontamination	Decontamination between samples included washing of all sampling equipment with ambient sea water and a laboratory grade phosphate free detergent (Decon 90), and successive rinsing with deionised water.
Dispatch	All samples were transported under chain of custody documentation to ALS's Mackay depot where they were refrigerated until being air freighted to ALS Brisbane for analysis. Blind duplicate samples were forwarded by

Activity	Details
	ALS to SGS. Geotechnical samples were forwarded by ALS to Trilab for Phase 1 and some Phase 2 testing. Samples for further Phase 2 testing were forwarded to Wagners by Trilab.

4.4 Laboratory methodology

4.4.1 Geochemical analysis

The presence of potential ASS (PASS) was assessed using the chromium suite of analysis (S_{CR}). The chromium suite, along with the Suspension Peroxide Oxidation Combined Acidity and Sulfur (SPOCAS) suite, is the ASS assessment recommended by Ahern et al (2003) and the most recent guidelines, *Queensland Acid Sulfate Soil Technical Manual – Soil Management Guideline* (Dear et al., 2002).

A total of 13 sediment samples were collected for laboratory analysis. All samples collected were submitted to ALS, a National Association of Testing Authorities (NATA) laboratory, for analysis. NATA accredited analysis undertaken at the laboratory, included:

- Chromium Suite (S_{CR})
- Electrical conductivity (EC)
- Salinity (total soluble salts) (TSS)
- Salinity Chloride (Cl⁻)
- Organic Matter (OM).

Additional analysis, not NATA accredited, included preliminary ASS screening field pH (pH $_{\rm f}$) and field peroxide pH (pH $_{\rm fox}$). Summary tables of the results are provided in Appendix B, while ALS laboratory documentation is provided in Appendix C.

4.4.2 Geotechnical testing

The geotechnical testing was undertaken using a phased approach. Phase 1 comprised general classification testing to determine characteristics such as particle size, moisture content, carbonate content and plasticity. A total of 10 Phase 1 samples were selected to ensure adequate coverage across the range of material types observed during the field sampling. Following Phase 1 testing, Phase 2 testing was undertaken on a total of three samples (one of which was a mixture of the four Berth Pocket samples) to assess the more detailed engineering properties of the sediment including permeability, density, strength and consolidation. The Phase 2 samples included one coarse-grained (sand) and two fine-grained (clay) materials. A summary of the geotechnical laboratory testing performed is provided in Table 4-3. The Phase 1 and 2 testing was completed by Trilab, however, the organic analysis was subcontracted by Trilab to ALS. The Trilab laboratory documentation is provided in Appendix D, while the ALS laboratory documentation is provided in Appendix C.

Table 4-3: Summary of geotechnical testing

Testing Phase	Test	Quantity
	Particle size distribution (sieve and hydrometer)	10
	Carbonate (CaCO₃) content	10
Phase 1	Moisture content	10
	Atterberg limits and linear shrinkage	10
	Particle density (specific gravity)	10
	Standard compaction	1
	Minimum / maximum dry density	1
	Direct shear box (100mm) – Single Stage	1
Phase 2	Consolidated undrained (CU) triaxial – 3 Stage	2
	1D consolidation (8 loadings)	2
	Constant head permeability	1
	Falling head permeability	2

Note: In addition to the specified geotechnical testing, supplementary testing undertaken on a number of samples by the environmental laboratory (ALS) has been considered in the geotechnical assessment, including organic content, carbonate (CaCO3) content and PSD testing.

Summary tables of the geotechnical test results are provided in Section 5.4. The laboratory test certificates are provided in Appendix C.

4.4.3 Cement Laboratory Testing

Cement testing was undertaken by Wagners. Following phase 1 and 2 testing, samples from Trilab were forwarded to Wagners for cement testing. The Wagner laboratory documentation is provided in Appendix E.

Table 4-4: Summary of cement laboratory testing

Test	Quantity
X-ray diffraction	3
X-ray fluorescence	3

5 Results

5.1 General

This section describes the findings from the field investigation undertaken, including the sediment materials encountered (Section 5.2) and results of laboratory analysis (Sections **Error! Reference source not found.** and 5.4). Sediment logs are presented in Appendix A, summary result tables are provided in Appendix B and the laboratory reports and QA/QC certificates, along with chain of custody and sample receipt documentation are provided in Appendix C.

5.2 Physical description

The sediment textures encountered in the field are summarised in Table 5-1. These are consistent with geology mapping (Section 3.2) for the region.

Table 5-1: General field description of sediments observed during sampling

Navigational area	General description			
Channel and Swing Basin	Brown / grey / dark grey. Mixture of silty SAND to clayey silty SAND to silty sandy CLAY to silty CLAY. Most samples contain coarse sand, shell fragments and have marine / sulphur odours			
Berth Pockets	Brown / grey / dark grey. Silty sandy CLAY. All samples contain shell fragments and have marine / sulphur odours			
Tug Berth	Brown / grey / dark grey. Silty sandy CLAY to silty CLAY. All samples contain shell fragments and have marine / sulphur odours			
Operational Area 2	Grey silty sandy CLAY with gravel to silty sandy CLAY. All samples contain shell fragments and have marine / sulphur odours.			

5.3 Geochemical results

5.3.1 Acid Sulfate Soils

The Queensland Acid Sulfate Soil Technical Manual – Soil Management Guidelines (Dear et al. 2002) provides action criteria that are used to compare the results of laboratory analysis. These action criteria are based on texture (fine, medium, coarse) with the most stringent criteria (0.03 %S or 18 mol H⁺/tonne) applied to course textured sediments and disturbances greater than 1000 tonnes. Although a range of textures were encountered, the 0.03 %S or 18 mol H⁺/tonne criteria is used in this report as the assumed disturbance would be greater than 1000 tonnes.

5.3.1.1 Preliminary screening

These tests are used to provide an indication of the presence of actual and potential acidity by measuring the difference between field pH (pH_F) to oxidised pH (pH_{FOX}). To obtain pH_{FOX}, hydrogen peroxide is added to the samples. This acts as a catalyst to oxidise sulfidic material causing the pH to change. Changes greater than 1 pH unit, pH_{FOX} values less than 3 and a strong reaction rate can be indicative of a PASS. The following results were reported:

- pH_F values ranged from pH 8.3 to pH 9. This indicates the sediment material selected for screening tests are strongly alkaline to very strongly alkaline and there is negligible actual acidity.
- PH_{Fox} values ranged from pH 6.3 to pH 6.8. These results indicate that PASS may not be of concern due to the high pH (>5). However, due to the shell content within a number of samples it is likely that any PASS is neutralised when the hydrogen peroxide is added and reacts with both sulfidic material and carbonates (i.e. shells) causing the pH to remain neutral through oxidiation.
- Initial reactions with were assessed following the addition of hydrogen peroxide. The reactions are rated by the laboratory on a scale of 1 (slight) to 4 (very high). The results ranged from 2 to 3.

Used in combination with soil profiling and other field observations, screening results can be used as a preliminary assessment of ASS. However, these results are inconclusive and further laboratory assessment using the Chromium Suite is provided in Sections 5.3.1.2 to 5.3.1.5 below.

5.3.1.2 Actual acidity

Actual acidity is assessed by the measurement of Titratable Actual Acidity (TAA). The determination of pH potassium chloride (pH_{KCI}) is a means of estimating the actual soil acidity which is used to calculate TAA.

All samples had a pH_{KCI} value > 8.4 indicating strongly alkaline sediments, likely to contain properties (i.e., carbonates) in large enough quantities to neutralize any existing acidity. This correlates well with field data that identified shell content in the sediment, preliminary screening (Section 5.3.1.1) and secondary carbonate sources described in Section 5.4.3.

The TAA at all sample locations was less than the laboratory practical quantitation limit (PQL) of 2 mole H^+/t , which is also less than the QASSIT guideline of 18 mole H^+/t . This indicates all samples have very little or no actual acidity.

5.3.1.3 Retained acidity

Retained acidity is the acidity stored in largely insoluble compounds such as jarosite and other iron and aluminium sulfate minerals which are not measured by the TAA titration. Retained acidity is only measured when the pH_{KCI} is <4.5 or when yellow mottles of jarosite, natrojarosite,

schwertmannite, etc. have been noted in the sample. Retained acidity (or net acid soluble sulfur (S_{NAS})) is estimated by subtracting S_{KCI} from S_{HCI} .

As pH_{KCI} is greater than pH 4.5 in all samples analysed, retained acidity was not determined.

Note that the total extractable sulfate (S_{KCI}) result provides a measure of adsorbed and soluble sulfate, including gypsum if present i.e. both inorganic (ASS) and organic forms of sulfur and is determined during the TAA process (Section 5.3.1.2). As retained acidity was not determined, S_{KCI} data is not used to assess ASS.

5.3.1.4 Potential acidity

Potential acidity is assessed through the measurement of Chromium Reducible Sulphur (S_{CR}). All 13 samples analysed have S_{CR} concentrations greater than the QASSIT guideline of 0.03% and 18 moles H+ / t. These samples generally contained a substantial fine fraction. These S_{CR} concentrations ranged from 0.06 to 0.256 % and 37 to 160 moles H+ / t.

5.3.1.5 Acid Neutralising Capacity, Net Acidity and Liming

Acid neutralizing capacity (ANC) is the natural ability of soil to buffer acidity either through the dissolution of calcium and/or magnesium carbonates (i.e. shells), cation exchange reaction, reaction of organic and clay fractions or other soil minerals. The effectiveness of neutralization can be hindered somewhat depending on the available forms for acid buffering. For example, where carbonates are stored in coarse shells, acid buffering may not be readily available. In the laboratory, samples are ground therefore making any carbonates (such as shell fragments) more available for neutralisation and therefore 'over estimating' ANC. This is somewhat accounted for by 1.5 correction factor incorporated into liming rates reported with the final acid base accounting. A pH_{KCI} greater >6.5 (Section 5.3.1.2) is one attribute that indicates the presence of carbonates. The greater the pH is above 6.5, the more likely that the ANC will be effective.

Net acidity is the final measure of acidity within a sample once the acid neutralising capacity has been subtracted from the sum of all acids (actual, potential and retained) and is known as acid-base accounting (ABA). In general, the following equation describes the ABA used in ASS determination:

Net Acidity = Potential Sulfidic Acidity + Actual Acidity + Retained Acidity - measured ANC/FF

Note: FF refers to the fineness factor (generally 1.5) applied to liming rates.

Net acidity was below the laboratory PQL (10 moles H^+/t) in all samples analysed and hence below the QASSIT guidelines of 18 moles H^+/t . This correlates to a liming rate which is also below a laboratory PQL of 1 kg CaCO3/t, i.e. as there is no net acidity in samples, no treatment (i.e. liming) is required.

5.3.2 Salinity and Organic Matter

A range of salinity parameters and organic matter were determined for selected samples to provide an indication of the initial environmental risk to native vegetation, groundwater and surface water and rehabilitation if maintenance sediment is untreated and reused on land. Based on the analysis the following ranges were reported:

- Salinity Total Soluble Salts (TSS) ranged from 11100 to 24600 mg/kg
- Chloride (Cl-) ranged from 8020 to 35500 mg/kg
- Electrical Conductivity (EC) ranged from 3430 to 7570 μS/cm
- Organic Matter (OM) ranged from 1 to 5.9%.

Higher salinity, CL- and EC (i.e. >20000 mg/kg and >20000 μ S/cm) are reported for samples with finer textures (i.e. silts and clays), with the highest concentrations detected in Channel and Swing Basin, Berth Pockets and Tug Berth samples.

Sandy textured sediments were reported with lower salinity, CI- and EC values (generally <20000 mg/kg, <20000 mg/kg and <5000 μ S/cm).

All samples are considered extremely saline (i.e. > 1210 μ S/cm) according to Rayment and Lyons, 2011 salinity ratings.

The OM ranged from 1.0 to 5.9% with finer textured samples containing the highest (generally 3 %) OM in samples with less than 30% sand.

5.4 Geotechnical testing

5.4.1 Particle size distribution

The Phase 1 samples were subjected to PSD testing to determine the grading characteristics of the sediments and enable classification based on AS1726-2017 (Geotechnical Site Investigations). In addition to the Phase 1 geotechnical samples, PSD testing was also undertaken on samples tested for ASS, salinity and organic matter and these supplementary results were included in the PSD assessment.

It is noted the AS1726-2017 method of classification differs from the superseded AS1726-1993 standard and the Unified Soil Classification System (USCS) in that the boundary between "fine-grained" and "coarse-grained" soil is defined by a fines fraction of 35%. This is based on a behavioural approach. That is, a soil with >35% fines (<0.075 mm particle diameter) is classified as a fine-grained soil (silt / clay) as the behaviour of the soil will be predominantly controlled by the fines fraction. A soil with <35% fines is classified as a coarse-grained soil (sand / gravel) as the behaviour of this material will be predominantly controlled by the coarse fraction. A summary of the AS1726-2017 soil classification system is provided in Table 5-2.

The PSD results of the Phase 1 samples, in combination with the plasticity test results, have been used to define the classification of the Phase 1 samples in accordance with AS1726-2017, as summarised in Table 5-3.

The PSD results from the Phase 1 samples have been combined with the results from the supplementary environmental testing to provide an estimate of the average particle sizes within each area of the site. This is presented graphically in Figure 5-1 and Figure 5-2 (note the four berth pockets have been included as a single area due to the consistency of material identified at these locations). The PSD results indicate that the majority of sediments within the Port have fines contents in excess of 50%, with an average fines content of approximately 74%. Only two samples (SB_45 and SB_50) were classified as coarse-grained soil with fines contents of 22% (Silty Sand) and 8% (Sand). The areas of the site where coarse-grained sediments were identified included the western edge of the Swing Basin and Channel area near Berth 4 and close to the port entrance.

Table 5-4 provides an estimate of the total dredging volumes for each particle size based on the average PSD results within each area.

5.4.2 Organic content

Based on Table 3 of AS1726-2017, a soil may be classified as "Organic Soil" if the organic content (expressed as a percentage of the dry soil mass) is greater than 2%. A number of the Phase 1 samples were subjected to organic content testing and this was used to assist in the classification of the samples. The results of this testing are presented in Table 5-3 and indicate organic contents ranging from 1.0% ("Inorganic Soil") to 5.9% ("Organic Soil"). As described in 5.3.2, a number of environmental samples were also tested for organic matter, with these results ranging from 1.0% to 3.2%. The entire set of results suggests that the fine-grained sediments at the Port include a combination of organic and inorganic materials, with organic soils being more prevalent within the Berth Pockets and Tug Berths.

5.4.3 Carbonate (CaCO₃) content

Due to the presence of shells and secondary carbonate in the seabed sediments, carbonate (CaCO₃) content testing was undertaken on the Phase 1 samples. It is important to define this property as soils with high proportions of calcium carbonate can have high porosity and low crushing strength.

The carbonate content test results are presented in Table 5-3 and indicate a range of 5.8% to 10.4% for the Phase 1 samples. Including the supplementary environmental samples, the full range of results is 2.4% to 10.4% with an average value of 7.5%.

A soil with a carbonate content greater than 50% is generally regarded as a "carbonate soil" for the purposes of engineering design. On this basis, none of the samples from the Port would be regarded as carbonate soil, but would be referred to as "calcareous soil" due to the proportion of carbonate generally ranging from 2% to 10%.

Table 5-2: Definition of group symbols used in soil classification (reproduced from Tables 9 and 10 of AS 1726-2017)

Major divisions		Group symbol	Typical names	Laboratory classification
Coarse- grained soil (more than 65% of soil excluding oversize fraction is greater than 0.075 mm)	GRAVEL (more than half of coarse fraction is larger than 2.36 mm)	GW	Gravel and gravel-sand mixtures, little or no fines	≤5% fines
		GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	≤5% fines
		GM	Gravel-silt mixtures and gravel-sand- silt mixtures	≥12% fines, fines are silty
		GC	Gravel-clay mixtures and gravel-sand- clay mixtures	≥12% fines, fines are clayey
	SAND (more than half of coarse fraction is smaller than 2.36 mm)	SW	Sand and gravel-sand mixtures, well graded, little or no fines	≤5% fines
		SP	Sand and gravel-sand mixtures, poorly graded, little or no fines	≤5% fines
		SM	Sand-silt mixtures	≥12% fines, fines are silty
		SC	Sand-clay mixtures	≥12% fines, fines are clayey
Fine- grained soil (more than 35% of soil excluding oversize fraction is less than 0.075 mm)	SILT and CLAY (low to medium plasticity)	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	Below A line
		CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Above A line
		OL	Organic silt	Below A line
	SILT and CLAY (high plasticity)	MH	Inorganic silt of high plasticity	Below A line
		СН	Inorganic clay of high plasticity	Above A line
		ОН	Organic clay of medium to high plasticity, organic silt	Below A line
	Highly organic soil	Pt	Peat, highly organic soil	-

Table 5-3: Summary of particle size distribution and carbonate content test results

Area	Sample	Group		Partic	cle size distrib	ution		Organic	CaCO ₃
Area	ID	Symbol (AS1726- 2017)	Gravel	Sand	Fines (silt & clay)	Silt	Clay	Content	Content
			%	%	%	%	%	%	%
Swing	SB_16	СН-ОН	0	3	97	80	17	-	7.5
Basin &	SB_40	СН-ОН	1	16	83	43	40	-	8.1
Channel	SB_45	SM	2	76	22	15	7	1.2	9.9
	B1_07	ОН	0	4	96	45	51	4.6	9.8
Berth	B3_14	ОН	0	4	96	48	48	4.2	10.4
Pockets	B4_01	ОН	0	5	95	41	54	3.9	10.0
	B5_10	ОН	0	3	97	46	51	3.3	10.2
Tug Berths	TB_05	ОН	0	19	81	40	41	5.9	7.1
Operational	OP2_18	CI	5	43	52	27	25	1.0	5.8
Area 2	OP2_24	СН	0	16	84	44	40	1.8	8.8

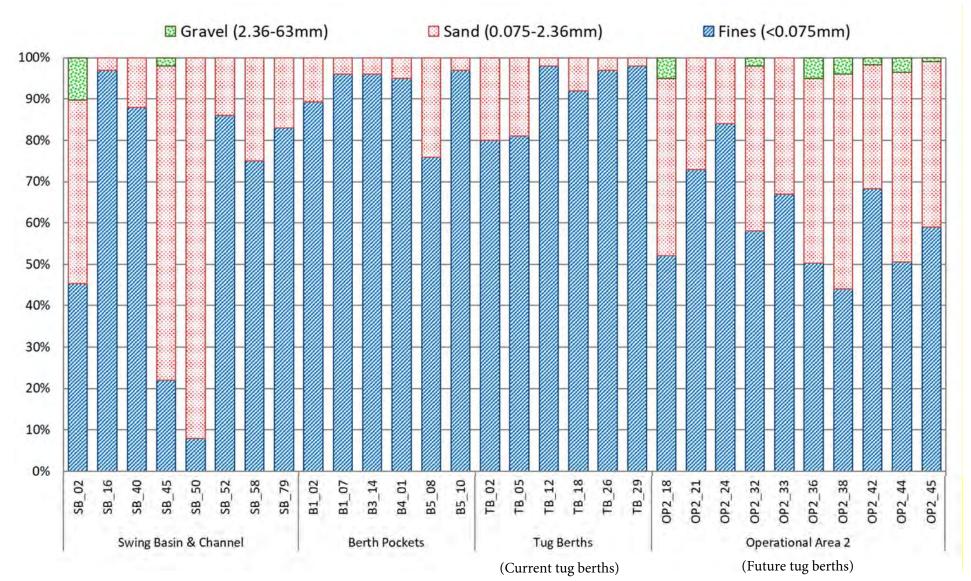


Figure 5-1: Particle Size Distribution (gravel / sand / fines proportions) by sample location

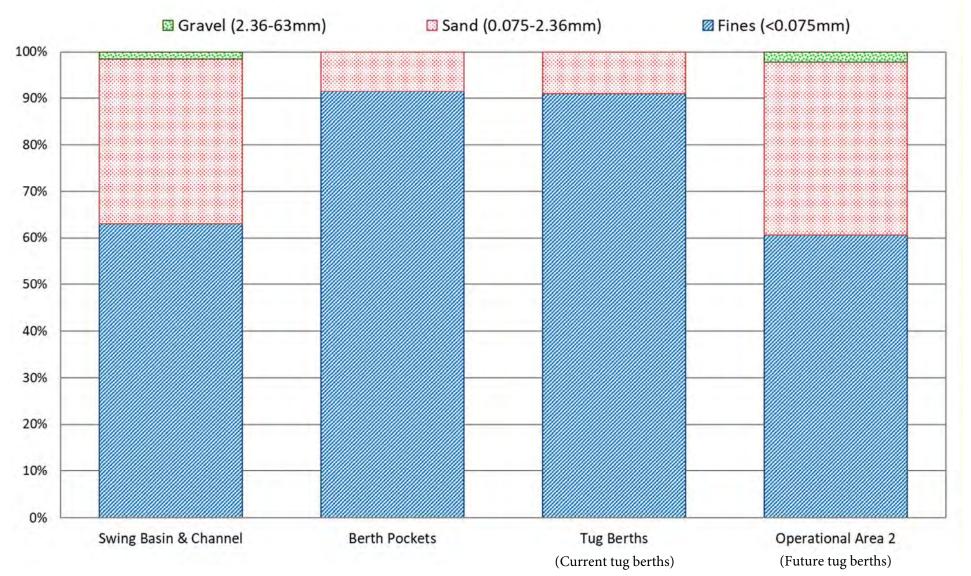


Figure 5-2: Average Particle Size Distribution (gravel / sand / fines proportions) by area

Marine Sediment Properties Report

Table 5-4: Estimated dredge volumes based on average Particle Size Distribution by area

Area		ige Parti stribution		Approximate Total Dredge	Proportion of Total		nate Dredge Particle Size	
	Fines	Sand	Gravel	Volume Estimate ¹ (m³)	Estimated Dredging (%)	Fines	Sand	Gravel
Swing Basin & Channel	63	35	2	80,000	59	50,400	28,400	1,200
Berth Pockets	92	8	0	27,000	20	24,700	2,300	-
Tug Berths	91	9	0	1,600	1	1,500	100	-
Operational Area 2	61	37	2	27,000	20	16,400	10,000	600
All areas combined ²	69	30	1	135,600	100	93,000	40,800	1,800

Notes:

- Approximate total dredge volumes are based on historical data provided by NQBP 1.
- PSD values for combined areas are weighted averages based on proportions of total dredging

5.4.4 **Moisture content**

The moisture content of a soil is defined as the ratio of the mass of water to the mass of solids. The moisture content provides an indication of the amount of effort that may be required to dry out the dredged sediment for various reuse options, for example if a particular moisture content was required to be achieved for compaction works.

The Phase 1 geotechnical samples were tested for moisture content and the results are presented in Table 5-5. The coarse-grained sample (SB_45) recorded a moisture content of 28%, whereas the fine-grained samples recorded much higher values of between 64% and 199% (mostly >120%). The majority of these results are relatively high, but it is not clear whether this is due to mineral characteristics or sample disturbance.

It is noted there is some level of inaccuracy associated with the moisture content results due to the nature of the grab sampling method, which is carried out unseen at seabed level and causes significant sample disturbance.

5.4.5 Atterberg limits and linear shrinkage

Atterberg limits testing (liquid limit and plastic limit) is designed to reflect the influence of water content, grain size and mineral composition on the mechanical behaviour of clays and silts. The results are also used to classify soils in accordance with AS1726-2017. Refer to Table 5-2 for a summary of the AS1726-2017 soil classification system.

Atterberg limits testing was undertaken on all the Phase 1 geotechnical samples. The results are summarised in Table 5-5 and illustrated on the plasticity chart in Figure 5-3. It can be seen from Figure 5-3 that the plasticity of the fine-grained soils at the Port is generally very high, with only one of the fine-grained samples (OP2_18) recording a reading of medium plasticity, most likely due to this sample having a lower than average fines content. The silty sand sample (SB_45) was also tested and exhibited "non-plastic" behaviour. The fine-grained test results all fell above the "A-Line", meaning these materials will exhibit the engineering behaviour of a clay as opposed to a silt. For all fine-grained samples tested, the moisture contents were found to be higher than the corresponding liquid limits, indicating these in-situ sediments are likely to be sensitive. If the natural moisture content (w_N) of the soil is greater than the liquidity index (LI=(w_N-PL)/(LL-PL)), the soils may be stable in an undisturbed state, but a sudden change in stress may transform them into a liquid state. Based on the Phase 1 testing the natural moisture content of the fine-grained sediments is higher than the liquidity index at the Berth Pockets and Swing Basin and Channel areas, and lower than the liquidity index at the Tug Berths and Operational Area 2.

Linear shrinkage results between 11.0% and 26.5% and plasticity index (PI) results between 28% and 106% were recorded. The weighted plasticity index (WPI) has also been calculated (refer Table 5-5) and used to estimate the Volume Change Classification based on the method proposed by Look (1994). As shown in Table 5-5, the fine-grained sediments tested suggest a generally "very high" potential for volume change, with a "low" potential for volume change indicated by the test results from OP2_18.

Table 5-5: Summary of moisture content and plasticity test results

Area	Sample ID	Group Symbol	Moisture Content			Limits rinkag		WPI (% passing	Volume Change
		(AS1726- 2017)	(%)	LL	PL	PI	LS	0.425mm x PI)	Classification (Look, 1994)
	SB_16	СН	198.9	140	34	106	26.5	10,600	Very High
Swing Basin & Channel	SB_40	СН-ОН	167.1	118	31	87	24.0	-	-
St 5.101.11.01	SB_45	SM	28.0	NP	NP	NP	NP	-	-
	B1_07	ОН	176.0	128	37	91	26.5	9,009	Very High
Berth	B3_14	ОН	191.2	119	37	82	23.0	8,118	Very High
Pockets	B4_01	ОН	186.6	119	35	84	22.0	8,316	Very High
	B5_10	ОН	164.0	125	38	87	23.5	8,613	Very High
Tug Berths	TB_05	ОН	125.5	83	32	51	15.5	4,845	High
	OP2_18	CI	63.9	45	17	28	11.0	2,156	Low
Operational Area 2	OP2_24	СН	131.0	83	29	54	18.5	5,346	Very High
	SB_16	СН	198.9	140	34	106	26.5	10,600	Very High
LL = Liquid Limit;	PL = Plastic Limit	; PI = Plasticity	Index; WPI = W	eighted	Plasticit	y Index;	NP = Non	-plastic	

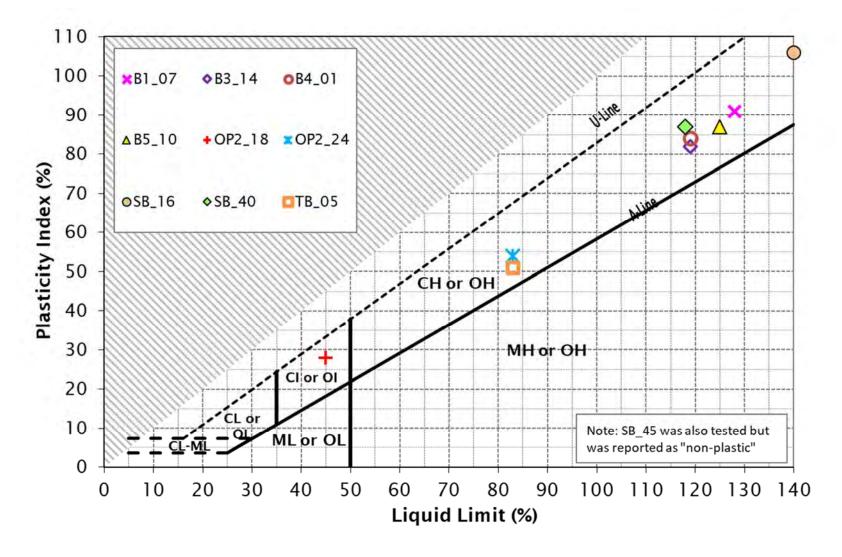
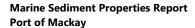



Figure 5-3: Plasticity chart showing results of Atterberg limits testing

5.4.6 Density

Several different types of density testing were carried out on the Phase 1 and Phase 2 geotechnical samples. These tests are discussed in the following sections and the results are summarised in Table 5-6. The results are also presented graphically in Figure 5-4 which shows a plot of bulk density versus fines content for a range of test methods. Note that for the purposes of this assessment "bulk density" is defined as the density of the entire soil sample including the weight / volume of all soil, water and air voids within the sample.

Particle density

Particle density (effectively equivalent to specific gravity) testing was undertaken on the Phase 1 geotechnical samples, with the testing generally only being performed on the fraction passing the 2.36 mm sieve (i.e. the combined silt, clay and sand proportions of the sample). The Phase 1 particle densities ranged between 2.49 t/m³ and 2.61 t/m³. Particle density testing was also carried out on the supplementary environmental samples with these results ranging from 2.40 t/m³ to 2.77 t/m³. The average particle density from the entire set of test results was 2.59 t/m³.

In-situ bulk density

Particle density and moisture content results can be used to approximate the in-situ bulk density of marine sediments using phase relationships. For grab sample specimens, which are collected underwater and are significantly disturbed during the sampling process, there is some degree of inaccuracy associated with this method. However, where there is a lack of undisturbed samples available it can be useful for providing indicative values of seabed density, which can then be compared with other density values such as the maximum density results obtained using the standard compaction test. The following formula has been used to estimate in-situ bulk density based on the classification test results:

Bulk Density,
$$\rho = \frac{G_s(1+w)}{1 + \frac{wG_s}{S_r}} \rho_w$$

Where:

 G_s = specific gravity of the soil (obtained from particle density testing)

w = moisture content

 S_r = degree of saturation (assumed as ~1 for seabed sediments)

 ρ_w = density of water (~1 t/m³)

As can be seen in Table 5-6 and Figure 5-4, the results of this estimation show a clear trend of decreasing in-situ bulk density with an increase in fines content. This trend is to be expected for the types of sediments encountered at the Port. There are some relatively low values of density that have been estimated and it is possible the sampling process (which may have resulted in an overestimated moisture content) has attributed to this. However, Figure 5-4 also shows a typical range of bulk densities for soft silty clay / fresh harbour sediments (Bray, 1979), which suggests the estimated values generally fall within reasonable limits, generally within the range of 1.2 t/m³ to 1.6 t/m³.

Maximum dry density and optimum moisture content

Standard compaction testing (test method AS 1289 5.1.1) was undertaken on a single sample, which was made by combining / blending the four Berth Pocket samples. The combined sample was necessary due to the large sample quantity required for this type of testing, and the Berth Pocket samples all showed relatively similar results during the Phase 1 testing. The purpose of this test was to provide an indication of the maximum dry density (MDD) that may be achieved during future placement of the dredged fine-grained sediments and the optimum moisture content (OMC) required to achieve this density.

The standard compaction test resulted in a MDD of 1.45 t/m³ and an OMC of 23.3%, which corresponds to a bulk / wet density of 1.79 t/m³. These values were used to assist in the specification of remoulding conditions for the other Phase 2 testing on this sample. The results of the compaction test are compared with the estimated in-situ bulk densities in Figure 5-4.

Minimum / Maximum Dry Density

Minimum / maximum dry density testing was performed in accordance with AS1289.5.5.1 on the silty sand sample from SB_45. The results are presented in Table 5-6 and suggest that the placed dry density of this material may fall in the range of 1.14 t/m³ to 1.62 t/m³ depending on the level of compaction or method of placement utilised onshore. The maximum bulk / wet density from this test is compared with the estimated in-situ bulk density in Figure 5-4.

Table 5-6 Summary of density test results

Area	Sample ID	Group Symbol (AS1726- 2017)	ool 26-		d in-situ bu ohase relati		Comp Test	dard action t (AS 5.1.1)	Maxim Den	num / um Dry sity 9.5.5.1)
				Moisture content	Bulk density	Dry Density	MDD	ОМС	Min	Max
			t/m³	%	t/m³	t/m³	t/m³	%	t/m³	t/m³
	SB_16	СН	2.57	198.9	1.26	0.42	-	-	-	-
Swing Basin & Channel	SB_40	СН-ОН	2.55	167.1	1.29	0.48	-	-	-	-
G.1	SB_45	SM	2.61	28.0	1.93	1.51	-	-	1.14	1.62
	B1_07	ОН	2.49	176.0	1.28	0.46			-	-
Death Deathar	B3_14	ОН	2.56	191.2	1.26	0.43	1 45	22.2	-	-
Berth Pockets	B4_01	ОН	2.59	186.6	1.27	0.44	1.45	23.3	-	-
	B5_10	ОН	2.58	164.0	1.30	0.49			-	-
Tug Berths	TB_05	ОН	2.55	125.5	1.37	0.61	-	-	-	-
Operational	OP2_18	CI	2.61	63.9	1.60	0.98	-	-	-	-
Area 2	OP2_24	СН	2.56	131.0	1.36	0.59	-	-	- 1.14 1 - - 3 - -	-

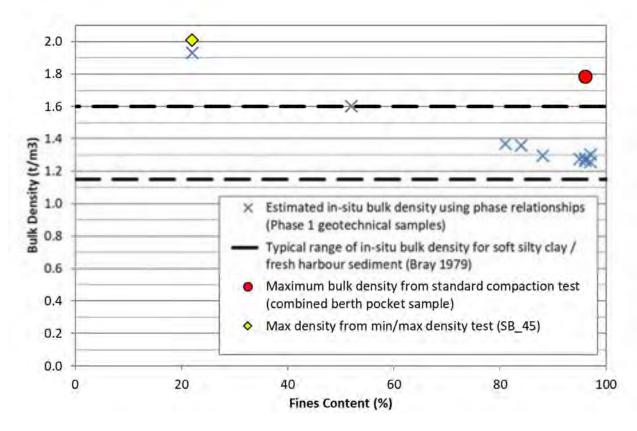


Figure 5-4: Bulk density vs. fines content

5.4.7 Strength and consolidation

Strength and consolidation tests were undertaken on remoulded and moisture conditioned samples to provide indicative parameters for the dredged materials following reworking and field placement. The sample preparation and test results are summarised below.

Direct shear

Direct shear testing (single stage) was undertaken on the silty sand sample from SB_45 to provide an indicative strength (angle of internal friction) for the coarse-grained sediment in this area. The sample was remoulded to a target relative density of 70% (based on the results of the minimum / maximum dry density testing) and sheared under a target vertical pressure of 100 kPa. The direct shear test results are summarised in Table 5-7, and indicate that this coarse-grained soil may achieve a friction angle of approximately 36° after compaction and loading. This value is within the lower end of the range generally associated with a "dense" sand deposit and suggests that the coarse-grained sediments in this area may be suitable for medium loading applications following adequate compaction.

Table 5-7 Summary of direct shear test results

Area	Sample ID	Group Symbol		led Sample etails	Effective Fri		
		(AS1726- 2017)	Moisture Content	Wet Density	Peak	Residual	
			%	t/m³	•	0	
Swing Basin & Channel	SB_45	SM	24.1 1.79		36.4	35.5	

CU Triaxial

Consolidated undrained (CU) triaxial testing (3 stage) was undertaken on two clay samples (including a high plasticity, organic clay and a medium plasticity, inorganic clay) to provide indicative strengths (effective cohesion and effective friction angle) for the fine-grained sediments. Prior to testing, the combined Berth Pockets sample was remoulded based on a target dry density of 95% MDD and a target moisture content of 100% OMC (using the standard compaction test results). The second sample (OP2_18) was remoulded based on a target dry density of 1.5 t/m³ and a target moisture content of 25-30%.

The CU testing was performed at target confining pressures of 50 kPa, 100 kPa and 200 kPa. The results are summarised in Table 5-8 with effective cohesion (c') and effective friction angle (ϕ') taken as average values over the three stages of the test. The highly plastic, organic clay sample from the Berth Pockets only achieved a relatively low strength (c'=3 kPa, ϕ' =25°) after being dried out and compacted, which suggests this material would only be suitable for low loading applications following dredging and controlled placement onshore. The medium plasticity clay sample from Operational Area 2 achieved a higher strength (c'=5 kPa, ϕ' =35°), likely due in part to the greater density of this sample, which suggests this material may be suitable for medium loading applications following adequate drying out and compaction.

Table 5-8 Summary of CU triaxial test results

Area	Sample ID	Group Symbol	Remoulde Det		Average Effective	Average Effective
		(AS1726- 2017)	Moisture Content	Dry Density	Cohesion, c'	Friction Angle, φ'
			%	t/m³	kPa	•
Berth Pockets	B1_07, B3_14, B4_01, B5_10 (combined)	ОН	22.7	1.38	3.0	25.0
Operational Area 2	OP2_18	CI	24.9	1.50	4.7	34.7

1D Consolidation (Oedometer)

The two samples selected for CU triaxial testing were also subjected to 1-dimensional consolidation (oedometer) testing to assess the consolidation parameters of the fine-grained sediments. Prior to testing, the samples were remoulded based on the same target dry density and moisture content as the CU triaxial samples. The oedometer sample was loaded, unloaded and reloaded at pressures ranging from 20 kPa to 640 kPa. The results are provided on the laboratory certificates in Appendix D and a summary of the compression index (c_c) and coefficient of consolidation (c_v) values is provided in Table 5-9.

The range of c_v values for the highly plastic, organic clay sample from the Berth Pockets was 21 m²/yr to 93 m²/yr, which is higher than expected for this material and would typically be associated with a low plasticity clay or silt. The range of c_v values for the medium plasticity clay sample from Operational Area 2 was 2 m²/yr to 23 m²/yr, which is within the expected range for this type of material. In general, the fine-grained sediments at the Port may be expected to exhibit c_v values ranging from approximately 1 m²/yr to 100 m²/yr.

Material	Approximate coefficient of	Approx. time for consolidation based on drainage path length (m)								
	consolidation, C _v (m ² /yr)	0.3	1	3	10					
Sands & Gravels Sands	100,000	<1 hr <1 hr	<1 hr 1 to 10 hrs	I to 10 hrs 10 to 100 hrs	10 to 100 hrs 1 to 10 days					
Clayey sands	1000	3 to 30 hours	10 to 100 hrs	3 to 30 days	I to 10 mths					
Silts	100	10 to 100 hours	3 to 30 days	I to 10 mths	10 to 100 mths					
CL clays	10	10 to 100 days	I to 10 months	I to 10 yrs	10 to 100 yrs					
CH clays	1	3 to 30 months	I to 10 yrs	30 to 100 yrs	100 to 1000 yr					

Note: The "drainage path length" is the distance that water has to travel to exit the consolidating sediment when it is under compression (e.g. in a 5 m thick clay deposit overlain and underlain by free-draining sand, the maximum drainage path length would be 2.5m). The drainage path length can be reduced by various engineering solutions such as prefabricated vertical "wick" drains.

Figure 5-5 (Look, 2007) shows some approximate drainage times associated with typical c_{ν} values for various materials.

Table 5-9 Summary of Oedometer test results

Area	Sample ID	Group Symbol	Remoulde Deta	ed Sample ails	Compression Index (c _c)	Range of Coefficient of
		(AS1726 -2017)	Moisture Content	Dry Density	during final stage of test	Consolidation , c _v (t ₉₀)
			%	t/m3	(-)	m²/yr
Berth Pockets	B1_07, B3_14, B4_01, B5_10 (combined)	ОН	30.0	1.31	0.35	21 to 93
Operational Area 2	OP2_18	CI	25.3	1.50	0.15	2 to 23

Material	Approximate coefficient of	Approx. time fo	Approx. time for consolidation based on drainage path length (m)							
	consolidation, C _v (m ² /yr)	0.3	1	3	10					
Sands & Gravels Sands	100,000	<1 hr <1 hr	<1 hr 1 to 10 hrs	1 to 10 hrs 10 to 100 hrs	10 to 100 hrs 1 to 10 days					
Clayey sands	1000	3 to 30 hours	10 to 100 hrs	3 to 30 days	I to 10 mths					
Silts	100	10 to 100 hours	3 to 30 days	I to 10 mths	10 to 100 mths					
CL clays	10	10 to 100 days	I to 10 months	I to 10 yrs	10 to 100 yrs					
CH clays	1	3 to 30 months	I to 10 yrs	30 to 100 yrs	100 to 1000 yrs					

Note: The "drainage path length" is the distance that water has to travel to exit the consolidating sediment when it is under compression (e.g. in a 5 m thick clay deposit overlain and underlain by free-draining sand, the maximum drainage path length would be 2.5m). The drainage path length can be reduced by various engineering solutions such as prefabricated vertical "wick" drains.

Figure 5-5 Time required for drainage (reproduced from Look, 2007)

5.4.8 Permeability

To provide an indication of the post-compaction permeability of the dredged sediments, permeability testing was carried out on the three Phase 2 samples. The coarse-grained sample (SB-45) was remoulded in the same manner as the direct shear sample (target 70% relative density) and tested using the constant head permeability test method. The fine-grained samples were remoulded in the same manner as the CU triaxial and 1D consolidation samples and were tested using the falling head permeability test method.

The permeability test results are summarised in Table 5-10 and are generally within the range expected for the types of sediments tested, with "poor" drainage characteristics being reported for the two clay samples and "good" drainage characteristics for the silty sand sample.

Table 5-10 Summary of permeability test results

Area	Sample ID	Group Symbol (AS1726-2017)	Remoulded Sam	ple Details	Permeability
			Moisture Content	Dry Density	
			%	t/m³	m/s
Swing Basin & Channel	SB_45	SM	24.0	1.44	1.9 x 10 ⁻⁵
Berth Pockets	B1_07, B3_14, B4_01, B5_10 (combined)	ОН	23.1	1.45	1.7 x 10 ⁻¹⁰
Operational Area 2	OP2_18	Cl	25.5	1.50	2.8 x 10 ⁻¹⁰

5.5 Cement Laboratory Testing

Sediment material testing in Wagner's Brisbane cement laboratory was undertaken using both the X-ray diffraction (XRD) and X-ray fluorescence (XRF) test methods to provide a quantitative analysis (% weight) of mineral composition and chemical element composition respectively, to assess the potential suitability as a binding agent in products including concrete, bricks and stabilised engineering fill material. Three samples (i.e. TB05 (A&B), SB-45 and SB-02A) were selected for XRD and XRF testing. The results indicate:

- All three samples were shown in the XRD test to be almost 100% in crystalline mineral form, chiefly quartz. These materials would not chemically react with other materials to create a geopolymer cement in their current form.
- The XRF analyses also showed the presence of significant levels of iron and calcium which would further interfere with any geopolymer reactions.
- As expected for coastal marine sediments, significant levels of alkalis (Na2O & K20) and chlorides were also detected.

A summary of the results are provided in Table 5-11 and Table 5-12.

Table 5-11 XRD testing results

Campula					Mine	rals				
Sample	Quartz	Albite	Berlinite	Aragonite	Paratellurite	Halite	Calicte	Strontioborite	Retgersite	Graphite
Units	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%	wt%
SB_45	52.43%	33.16%	4.99%	4.27%	1.44%	1.93%	1.15%	0.63%		
SB_02A	65.03%	21.92%	3.50%	2.06%	1.20%	2.75%	3.54%			
TB05 A	46.80%	29.24%	5.16%	3.04%	0.73%	3.73%	3.51%	0.49%	7.30%	
TB05 B	31.04%	5.07%	1.91%	17.55%	3.21%	4.77%	22.07%	5.57%	8.06%	0.75%

Table 5-12: XRF testing results

Sample	Loss on Ignition	Na2O eq.	CI	SiO2	Al2O3	Fe2O3	CaO	MgO	SO3	K20	TiO2	P2O5	Na2O	CrO3	ZnO	Mn2O3	SrO
Units	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
SB_45	6.2	4.2	0.447	69.7	11.2	3.0	5.5	1.1	0.1	1.93	0.45	0.07	2.92	0.03	0.00	0.12	0.04
SB_02A	7.6	3.6	1.286	69.3	10.8	3.5	4.6	1.1	0.4	1.72	0.51	0.07	2.42	0.03	0.01	0.11	0.02
TB_05 A	11.5	3.9	1.461	56.6	14.9	5.7	5.5	1.8	0.6	1.70	0.82	0.11	2.82	0.01	0.01	0.13	0.03
TB_05 B	11.5	4.8	2.807	52.2	14.9	5.7	5.8	2.0	0.9	1.68	0.82	0.13	3.67	0.01	0.01	0.14	0.04

6 Data Validation

This section examines the validity of the analytical data obtained in the study. It provides confidence in the results presented.

6.1 Laboratory Analysis

The Quality Control Report provided by ALS are included with laboratory analysis reports in Appendix C. Table 6-1 identifies outliers in their QA/QC analysis.

Table 6-1 QA/QC laboratory outliers summary table

QA/QC Method	Laboratory Outliers	Comments
Laboratory Duplicates	There were no laboratory duplicates breaches that impact ASS parameters	
Laboratory control spike	There were no laboratory control spike breaches that impact ASS parameters	
Surrogate Spikes	There were no surrogate spike breaches that impact ASS parameters	
Matrix Spikes	There were no matrix spike breaches that impact ASS parameters	
Holding times	Holding time breaches exist for the following: Extraction / preparation: conductivity, chloride: OP2_18 (0-0.5), OP2_32 (0-0.5), OP2_36 (0-0.5), OP2_36 (0.5-1.0), OP2_36 (1.0-1.5)	Breaches in conductivity are not considered to impact data quality as the associated samples results are within expected ranges.

7 Conclusion

7.1 Geotechnical characteristics

The sediments encountered in the Port of Mackay navigational areas were predominantly fine-grained (silt/clay), with only two of the sampling locations (SB_45 and SB_50) being classified as coarse-grained soil with fines contents of 22% (Silty Sand) and 8% (Sand). These two sites were both located within the Swing Basin and Channel area. All other PSD test results indicate that fines contents generally range from 44% to 98%, with an average value of 74% recorded across the site. Hydrometer results suggest that silt and clay proportions within the sediments are approximately equal but Atterberg limits results indicate that the materials will behave in a predominantly clay-like manner.

The plasticity of the fine-grained soils at the Port is generally very high, with only one of the fine-grained samples (OP2_18) recording a reading of medium plasticity, most likely due to this sample having a lower than average fines content. For all fine-grained samples tested, the moisture contents were found to be higher than the corresponding liquid limits, indicating these in-situ sediments are likely to be sensitive. Based on the Phase 1 testing the natural moisture content of the fine-grained sediments was higher than the liquidity index at the Berth Pockets and Swing Basin and Channel areas, indicating that these soils may be stable in an undisturbed state but a sudden change in stress may transform them into a liquid state.

Linear shrinkage results between 11.0% and 26.5% and plasticity index (PI) results between 28% and 106% were recorded. The weighted plasticity index (WPI) values suggest a generally "very high" potential for volume change, with a "low" potential for volume change indicated by the test results from OP2_18.

The organic content of the sediments ranged from 1.0% to 5.9%, with any value greater than 2% being representative of an "Organic Soil" in accordance with AS 1726-2017. The test results suggest that the fine-grained sediments at the Port include a combination of organic and inorganic materials, with organic soils being more prevalent within the Berth Pockets and Tug Berths.

The carbonate (CaCO₃) content test results ranged from 2.4% to 10.4% with an average value of 7.5%. A soil with a carbonate content greater than 50% is generally regarded as a "carbonate soil" for the purposes of engineering design and these materials can exhibit high porosity and low crushing strength. However, none of the samples from the Port would be regarded as carbonate soil, but would be referred to as "calcareous soil" due to the proportion of carbonate generally ranging from 2% to 10%.

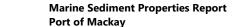
The recorded particle densities (effectively equivalent to specific gravity) ranged from 2.40 t/m³ to 2.77 t/m³ across the site with an average of 2.59 t/m³. The particle densities and the associated moisture content results were used to approximate the in-situ bulk density of the Phase 1 geotechnical samples using phase relationships (note there is some inaccuracy associated with the moisture content results due to the sampling process). The results of this estimation show a clear trend of decreasing in-situ density with an increase in fines content and suggest that in-situ bulk densities across the majority of the site fall within the range of 1.2 t/m³ to 1.6 t/m³.

Standard compaction testing was undertaken on the combined Berth Pockets sample to provide an indication of the maximum dry density (MDD) that may be achieved during future placement of the dredged fine-grained sediments and the optimum moisture content (OMC) required to achieve this density. The test resulted in a MDD of 1.45 t/m³ and an OMC of 23.3%, which corresponds to a bulk / wet density of 1.79 t/m³.

Minimum / maximum dry density testing was performed on the silty sand sample from SB_45. The results suggest that the placed dry density of this material may fall in the range of 1.14 t/m³ to 1.62 t/m³ depending on the level of compaction or method of placement utilised onshore.

Direct shear testing performed on the silty sand sample from SB_45 indicates that this material may achieve a friction angle of approximately 36° after compaction and loading. This value is within the lower end of the range generally associated with a "dense" sand deposit and suggests that the coarse-grained sediments in this area may be suitable for medium loading applications following adequate compaction.

The CU triaxial test results indicate that the average cohesion (c') of the samples after compaction and loading ranges from 3 kPa to 5 kPa, and the average friction angle ranges from 25° to 35°. These strengths suggest that the fine-grained sediments may be suitable for low to medium loading applications following adequate drying out and compaction (noting that fine-grained material typically requires a long time to adequately drain and consolidate), with the lower end of this range applicable to those locations with highly plastic, organic sediments (e.g. Berth Pockets).


The oedometer testing results indicate that, in general, the fine-grained sediments at the Port may be expected to exhibit c_v values ranging from approximately 1 m²/yr to 100 m²/yr, which is within the typical range expected for clays and silts. Some of these materials may take many months to many years to consolidate, depending on the level of compaction and drainage path length, although it is noted that consolidation times can vary significantly and can be better estimated by undertaking field trials (e.g. trial embankment with wick drains and surcharge).

The permeability test results are generally within the range expected for the types of sediments tested, with "poor" drainage characteristics being reported for the two clay samples and "good" drainage characteristics for the silty sand sample.

7.2 Cement binder characteristics

Cement laboratory testing results indicate that:

- All three samples were shown in the XRD test to be almost 100% in crystalline mineral form, chiefly quartz. These materials would not chemically react with other materials to create a geopolymer cement in their current form.
- The XRF analyses also showed the presence of significant levels of iron and calcium which would further interfere with any geopolymer reactions.
- As expected for coastal marine sediments, significant levels of alkalis (Na₂O & K₂O) and chlorides were also detected.

7.3 Geochemical Characteristics

Based on the ASS analysis, PASS, in concentrations greater than the QASSIT action criteria was detected in all samples analysed for ASS parameters from the navigational areas of the Port of Mackay.

Acid Neutralising Capacity was detected in all samples submitted for ASS analysis with concentrations sufficient to negate acidity. This buffering potential is expected to arise from the presence of carbonate within the sediments. These data indicate that the marine sediments from the Port of Mackay are unlikely to require treatment through neutralisation using lime dependent on the dredging and management methods applied to the sediments.

All samples are considered highly saline. If sediments are placed on land without treatment, salinity will degrade the quality of terrestrial soils and may impact the quality of receiving waters.

Organic Material (OM) (ranging from 1 to 5.9%) was reported for all samples analysed. This is considered inadequate to support plant growth. The highest OM (generally greater than 3%) was detected in finer textured samples (i.e. with sand components less than 30%.

8 References

Ahern, CR, Ahern, MR and Powell, B, 1998. *Guidelines for Sampling and Analysis of Lowland Acid Sulfate Soils (ASS) in Queensland 1998*. QASSIT, Department of Natural Resources, Resources Sciences Centre, Indooroopilly.

Ahern, CR, Mcelnea, AE, Sullivan, LA, 2004. *Acid Sulfate Soils – Laboratory Method Guidelines*. Queensland Department of Natural Resources, Mines and Energy, Indooroopilly, Queensland, Australia.

Altmeyer, W.T., 1955 Discussion of engineering properties of expansive clays. *Proceedings ASCE Journal of Soil Mechanics and Foundation Division*, 81.

Carter, M. and Bentley, S.P., 1991. Correlations of Soil Properties. Pentech Press. London

Commonwealth of Australia (2009) National Assessment Guidelines for Dredging (NAGD). Commonwealth of Australia, Canberra.

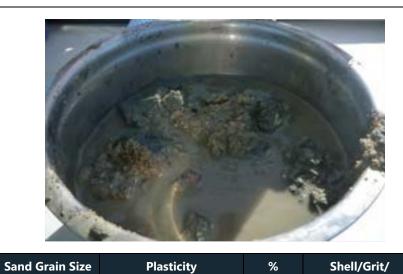
Dear, SE, Moore, NG, Dobos, SK, Watling, KM and Ahern, CR, 2002. *Soil Management Guidelines In Queensland Acid Sulfate Soil Technical Manual*. Department of Natural Resources and Mines, Indooroopilly, Queensland, Australia.

Department of Natural Resources, Mines and Water (DNRMW), 2006. Mackay, Australia 1:100,000 Geological Series Sheet 8755. Brisbane, DNRMW.

Holz, G. K, Shields, P.G., 1985. Mackay Sugar Cane Land Suitability Study QV85001. Queensland Department of Natural Resources and Mines (NRM), Brisbane.

Queensland Government, 2002. State Planning Policy 2/02 – Planning and Managing Development Involving Acid Sulfate Soils. Queensland Government, Brisbane.

Rayment, GE and Lyons, DJ (2011) Soil Chemical Methods – Australasia, CSIRO Publ., Collingwood, VIC.



Appendix A Field Survey Sheets and Logs

General Location of Sampling		Port of Mackay – Swing Basin		
Site Number		SB_02 (T1)		
Date/Sample Time		24/09/18, 1500		
Water Depth at Site		~11m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		S-E Winds 15-20kts		
Comments				
		PSD (%)		
Gravel (19)	Sand (52	2) Silt & Clay (29)		

Strata Change (m)	Co	lour	Field Texture Moist.			Coi				
0 – 0.1	Dark G	rey	Clayey SAND Wet							
General Location	of Sam	pling	Port of Mackay – Swing Basin				Port of Mackay – Swing Basin			
Site Number			SB_02 (T2)							
Date/Sample Tir	ne		24/09/18, 1500				24/09/18, 1500			
Water Depth at	ter Depth at Site			~11m						
Type of Core Sai	mpler		Grab							
Depth Retained			0.1m							
Weather Conditi	ions		S-E Winds 15-20kts							
Comments										
			PSD (%)							
Gravel (15)		Sand (42	1)	Silt & Clay (43)					
Strata Change	Co	lour	Field Tex	kture	Moist.	Coi				

Unknown due to

Stones

5%

Biota

5-10%

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark Grey	Sandy CLAY	Wet	Soft	Fine to Coarse	Unknown due to saturation	1%	5-10%	Marine/Faint Sulphur

Consist.

Coarse

Odour

Marine/Faint Sulphur

General Location of Sam	pling	Port of Mackay – Swing Basin		
Site Number		SB_02 (T3)		
Date/Sample Time		24/09/18, 1500		
Water Depth at Site		~11m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		S-E Winds 15-20kts		
Comments				
		PSD (%)		
Gravel (6)	Sand (37	<u> </u>	Silt & Clay (57)	

Strata Change (m)	Со	lour	Field Tex	cture	Moist.	Coi	
0 – 0.1	Dark G	rey	Sandy CLAY		Wet	Soft	
General Location	of Sam	pling	Port of Mackay -	Port of Mackay – Swing Basin			
Site Number			SB_16				
Date/Sample Tir	ne		24/09/18, 1530				
Water Depth at	er Depth at Site						
Type of Core Sai	mpler		Grab				
Depth Retained			0.1m				
Weather Condition	ions		S-E Winds 15-20kts				
Comments							
			PSD (%)				
Gravel (<1)		Sand (8)	(8) Silt & Clay (92)				
Strata Change	Co	lour	Field Tex	cture	Moist	Cor	

Unknown due to

Stones

1%

Biota

5-10%

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark Grey	Silty CLAY	Wet	Soft	Fine	Unknown due to saturation	0.5%	<10%	Marine/Faint Sulphur

Consist.

Fine to Coarse

Odour

Marine/Faint Sulphur

General Location of Sampling		Port of Mackay – Swing Basin		
Site Number		SB_40		
Date/Sample Time		24/09/18, 1600		
Water Depth at Site		~11m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Choppy, S-E Winds 15-20kts		
Comments				
		PSD (%)		
Gravel (1)	Sand (16	5)	Silt & Clay (83)	

Stones

Nil

Biota

5-10%

Strata Change (m)	Co	lour	Field Tex	cture	Moist.	Cor
0 – 0.1	Dark G	rey	Silty CLAY	Soft		
General Location	of Sam	pling	Port of Mackay -			
Site Number			SB_45			
Date/Sample Tir	ne		24/09/18, 1630			
Water Depth at	Site		~11m			
Type of Core Sai	mpler		Grab			
Depth Retained			0.1m			
Weather Condition	ions		Choppy, S-E Winds 15-20kts			
Comments						
			PSD (%)			
Gravel (3)		Sand (86	5)	Silt & Clay (11)	
Ctuata Channa						

Unknown due to

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark Grey	Clayey Silty SAND	Wet	Soft	Fine/Medium	Unknown due to saturation	Nil	20-40%	Marine/Faint Sulphur

Consist.

Nil

Odour

Marine/Faint Sulphur

General Location of Sampling		Port of Mackay – Swing Basin		
Site Number		SB_50		
Date/Sample Time		24/09/18, 171	10	
Water Depth at Site		~8m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Choppy, S-E Winds 15-20kts		
Comments				
		PSD (%)		
Gravel (<1%)	Sand (95%	%) Silt & Clay (5%)		

Strata Change (m)	Colour	Field Texture Moist.		Cons		
0 – 0.1	Sand	Silty SAND	Loose			
General Location	of Sampling	Port of Macka	ay – Swing Basin			
Site Number		SB_52				
Date/Sample Tir	ne	24/09/18, 1745				
Water Depth at	Site	~8m				
Type of Core Sai	npler	Grab				
Depth Retained		0.1m				
Weather Conditi	ons	Choppy, S-E Winds 15-20kts				
Comments						
		PSD (%)				
Gravel (<1)	Sand (24)	Silt & Clay (76))		

Unknown due to

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty sandy CLAY	Wet	Soft	Nil	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Consist.

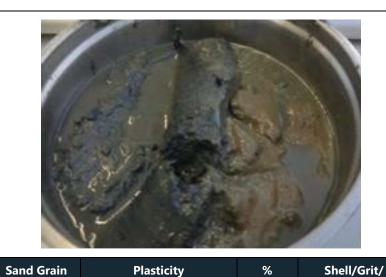
Fine/Medium

Odour

Marine/Faint

Sulphur

Biota


10%

Stones

Nil

General Location of S	ampling	Port of Mackay – Swing Basin			
Site Number		SB_58			
Date/Sample Time		24/09/18, 1815			
Water Depth at Site		~8m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions		Choppy, S-E Winds 15-20kts			
Comments					
	PSD (%)				
Gravel (<1%)	Sand (34%)		Silt & Clay (66%)		

Strata Change (m)	C	olour	Field Texture Moist.				
0 – 0.1	Grey brown		Silty CLAY Wet				
General Location	n of Sa	mpling	Port of Mackay – Swing Basin				
Site Number			SB_79				
Date/Sample Tir	ne		24/09/18, 1830				
Water Depth at	Site		~8m				
Type of Core Sai	mpler		Grab				
Depth Retained			0.1m				
Weather Condition	ions		Choppy, Wind 10-15kts				
Comments							
			PSD (%)				
Gravel (<1)		Sand (23)	Sand (23) Silt &)		

Unknown due to

Stones

Nil

Biota

Organics, 5-10%

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey and brown	Silty CLAY	Wet	Soft	Nil	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Consist.

Size

Nil

Odour

Marine/Faint

Sulphur

General Location of Sar	npling	Port of Mackay – Tug Berth			
Site Number		TB_02			
Date/Sample Time		25/09/18, 0830			
Water Depth at Site		~6m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions		Wind 10-15kts			
Comments					
	PSD (%)				
Gravel (1%)	Gravel (1%) Sand (29%		Silt & Clay (70%)		

%

Stones

Nil

Shell/Grit/

Biota

5-10%

Odour

Marine/Faint

Sulphur

Plasticity

Unknown due to

saturation

Strata Change (m)		Colour		Moist.	Co			
0 – 0.1	Grey	/	Silty sar	Wet	Soft			
General Location	n of S	ampling	Port of		200			
Site Number			TB_05 (T1)					
Date/Sample Tir	me		25/09/18, 0830					
Water Depth at	Site		~6m					
Type of Core Sa	mple		Grab			40		
Depth Retained			0.1m					
Weather Condit	ions		Wind 10	0-15kts				
Comments								
			PSD (%)					
Gravel (2%)		Sand (24%)		Silt & Clay (74%)				
Strata Change		Colour		Field Texture	Moist.	Co		

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Sand Grain

Size

Fine

Consist.

General Location of Sam	pling	Port of Mackay – Tug Berth			
Site Number		TB_05 (T2)			
Date/Sample Time		25/09/18, 1015			
Water Depth at Site		~6m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions		Wind 15-20kts			
Comments					
	PSD (%)				
Gravel (NT)	Gravel (NT) Sand (NT		Silt & Clay (NT)		

Unknown due to

Stones

Nil

Biota

5-10%

Strata Change (m)	Col	lour	Field Text	ture	Moist.	C		
0 – 0.1	Dark gr	ey	Silty sandy CLAY		Wet	Soft		
General Location of Sampling			Port of Mackay –					
Site Number			TB_05 (T3)					
Date/Sample Tir	le Time 25/09/18, 1015							
Water Depth at	h at Site ~		~6m					
Type of Core Sar	Type of Core Sampler			Grab				
Depth Retained			0.1m	1m				
Weather Condition	Weather Conditions			Wind 15-20kts				
Comments			Large amount of sand compared to T1 & T2					
			PSD (%)					
Gravel (NT)		Sand (N	Т)	Silt & Clay	(NT)			

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Dark grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Size

Fine

Odour

Marine/Faint

Gravel (<1%)

General Location of Sampling	Port of Mackay – Slipway				
Site Number	H-3				
Date/Sample Time	25/09/18, 1015				
Water Depth at Site	~6m				
Type of Core Sampler	Grab				
Depth Retained	0.1m				
Weather Conditions	Wind 15-20kts				
Comments					
PSD (%)					

Silt & Clay (40%)

Sand (60%)

Biota

Marine/Faint

<10%

Strata Change (m)	Colour	Field Texture Moist.			Co
0 – 0.1	Dark grey and brown	Silty sandy Cl	Soft		
General Location	of Sampling	Port of Macka	ay – Tug Berth		
Site Number		TB_12			
Date/Sample Tin	ne	25/09/18, 110			
Water Depth at S	Site	~1m			
Type of Core San	npler	Grab			
Depth Retained		0.1m			
Weather Condition	ons	Wind 10-15kts			
Comments					
		PSD (%)			
Gravel (<1%)	Sand (12%	5)	Silt & Clay (88%)		

Nil

Unknown due

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey and brown	Silty CLAY	Wet	Soft	Nil	Unknown due to saturation	Nil	<10%	Marine/Faint Sulphur

Size

Fine

General Location of Sampling		Port of Mackay – Tug Berth		
Site Number		TB_18		
Date/Sample Time		25/09/18, 1120		
Water Depth at Site		~12m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Wind 15-20kts		
Comments				
		PSD (%)		
Gravel (%)</th <th>Sand (139</th> <th>%)</th> <th>Silt & Clay (87%)</th>	Sand (139	%)	Silt & Clay (87%)	

% Stones

Shell/Grit/

Biota

5-10%

Odour

Marine/Faint Sulphur

Plasticity

Unknown due

Strata Change (m)	Co	lour	Field Texture Moist.				
0 – 0.1	Grey ar brown	nd	Silty CLAY Wet				
General Location of Sampling			Port of Mackay		"		
Site Number			TB_26				
Date/Sample Time			25/09/18, 1210				
Water Depth at S	Site		~11m				
Type of Core San	npler		Grab				
Depth Retained			0.1m				
Weather Conditions			Wind 10-15kts				
Comments					×		
			PSD (%)				
Gravel (<1%)		Sand (4%)	Silt & Clay (96%))		

Nil

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty CLAY	Wet	Soft	Nil	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Consist.

Sand Grain

Size

Nil

General Location of Sampling		Port of Mackay – Tug Berth		
Site Number		TB_29		
Date/Sample Time		25/09/18, 1300		
Water Depth at Site		~10m		
Type of Core Sampler		Grab		
Depth Retained		0.1m		
Weather Conditions		Wind 15-20kts		
Comments				
		PSD (%)		
Gravel (<1%)	Sand (119	%)	Silt & Clay (89%)	

% Stones

Shell/Grit/

Biota

5-10%

Odour

Marine/Faint Sulphur

Plasticity

Unknown due

Strata Change (m)	Colour	Field	Texture	Moist.	Co				
0 – 0.1	Grey	Silty CLAY	Silty CLAY Wet						
General Location	of Sampling	Port of Mackay	Port of Mackay – Berth No. 1				Port of Mackay – Berth No. 1		
Site Number		B1_07							
Date/Sample Tim	ie	25/09/18, 1400	25/09/18, 1400						
Water Depth at S	iite	~13.9m	~13.9m						
Type of Core San	npler	Grab	rab						
Depth Retained		0.1m	0.1m						
Weather Condition	ons	Calm-slightly o	Calm-slightly choppy, fine weather						
Comments									
		PSD (%)							
Gravel (3%)	Sand	(27%)	Silt & Clay (70%))					

Nil

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	1%	5-10%	Marine/Faint Sulphur

Sand Grain

Size

Nil

Consist.

General Location of Sam	pling	Port of Mackay – Berth No. 1					
Site Number		B1_02 (T1)					
Date/Sample Time		26/09/18, 0900					
Water Depth at Site	Site ~13.9m						
Type of Core Sampler		Grab			Grab		
Depth Retained		0.1m					
Weather Conditions		Choppy, Wind 11kts					
Comments							
PSD (%)							
Gravel (1%)	Sand (36%))	Silt & Clay (63%)				

Strata Change (m)	Ü	olour	Field	Texture	Moist.	Co				
0 – 0.1	Grey		Silty Sandy CLAY Wet							
General Location	General Location of Sampling Port of Mackay – Berth No. 1									
Site Number			B1_02 (T2)							
Date/Sample Tim	ate/Sample Time			26/09/18, 0900				26/09/18, 0900		
Water Depth at S	epth at Site			~13.9m						
Type of Core San	Core Sampler			Grab						
Depth Retained			0.1m							
Weather Condition	her Conditions			Choppy, Wind 11kts						
Comments										
		F	PSD (%)							
Gravel (<1%)		Sand (11%))	Silt & Clay (89%)						

1%

Unknown due

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty Sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	1%	5-10%	Marine/Faint Sulphur

Consist.

Size

Fine

Odour

Marine/Faint Sulphur

Biota

5-10%

Gravel (<1%)

General Location of Sampling	Port of Mackay – Berth No. 1			
Site Number	B1_02 (T3)			
Date/Sample Time	26/09/18, 0900			
Water Depth at Site	~13.9m			
Type of Core Sampler	Grab			
Depth Retained	0.1m			
Weather Conditions	Choppy, Wind 11kts			
Comments				
PSD (%)				

Sand (11%)

Silt & Clay (89%)

Unknown due

to saturation

Strata Change (m)	Co	lour	Field Tex	ture	Moist.	Co		
0 – 0.1	Grey		Silty Sandy CLAY Wet					
General Location	General Location of Sampling			Port of Mackay – Berth No. 3				
Site Number			B3_14					
Date/Sample Tim	ie	26/09/18, 1115						
Water Depth at S	Vater Depth at Site ~17m							
Type of Core San	npler		Grab					
Depth Retained			0.1m					
Weather Conditions			Choppy, Wind 7-11kts					
Comments								
		ı	PSD (%)					
Gravel (%)</td <th></th> <th>Sand (17</th> <td colspan="3">nd (17%) Silt & Clay (83%)</td> <td></td>		Sand (17	nd (17%) Silt & Clay (83%)					

1%

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey and brown	Silty Sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	5-10%	Marine/Faint Sulphur

Consist.

Size

Fine

Odour

Marine/Faint Sulphur

Biota

5-10%

General Location of Samp	ling	Port of Mackay – Berth No. 4			
Site Number		B4_01			
Date/Sample Time		26/09/18, 1155			
Water Depth at Site		~17m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions		Choppy, Wind 10-15kts			
Comments					
	PSD (%)				
Gravel (<1%)	Sand (11	%)	Silt & Clay (89%)		

Strata Change (m)	Col	our	Field Tea	xture	Moist.	C		
0 – 0.1	Grey		Silty Sandy CLAY		Wet	Soft		
General Location	of Samp	ling	Port of Mackay – Berth No. 5					
Site Number			B5_10					
Date/Sample Tim	ie		26/09/18, 1255					
Water Depth at S	ite		~16m					
Type of Core San	npler		Grab					
Depth Retained			0.1m					
Weather Conditions			Choppy, Wind 15-20kts					
Comments								
ı			PSD (%)					
Gravel (<1%)		Sand (26	5%)	Silt & Clay (74	%)			

Unknown due

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty Sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	<10%	Sulphur/marine

Consist.

Size

Fine

Odour

Marine/Faint Sulphur

Biota

5-10%

General Location of Samp	ling	Port of Mackay – Berth No. 5			
Site Number		B5_08			
Date/Sample Time		26/09/18, 1315			
Water Depth at Site		~12m			
Type of Core Sampler		Grab			
Depth Retained		0.1m			
Weather Conditions		Choppy, Wind 15-20kts			
Comments					
		PSD (%)			
Gravel (1%)	Sand (27	' %)	Silt & Clay (72%)		

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.1	Grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	Nil	20-40%	Sulphur/marine

General Location of Sampling	Port of Mackay – Operational Area 2					
Site Number	OP2_18					
Date/Sample Time	28/09/18, 1210					
Water Depth at Site	~8m					
Type of Core Sampler	Piston core					
Depth Retained	0.5m					
Weather Conditions / sea state	Wind 4kts / glass					
Comments						
PSD (%)						

	- '	- 7	
Strata Change (m)	Gravel (%)	Sand (%)	Silt & Clay (%)
0 – 0.5	4	40	56

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5	Grey	Sandy CLAY	Moist	Fine	Fine	Unknown due to saturation	NIL	5-10%	Sulphur/marine

General Location of Sa	ampling	Port of Mackay – Operational Area 2				
Site Number		OP2_2	<u> </u>			
Date/Sample Time		28/09	/18, 1120			
Water Depth at Site		~9m				
Type of Core Sampler			core			
Depth Retained			0.5m			
Weather Conditions / sea state		Still				
Comments		Refusal at 0.5m				
		PSD (%	6)			
Strata Change (m)	Gravel (9	%) Sand (%)		Silt & Clay (%)		
0 – 0.5	2%		31%	67%		

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5	Grey	Sandy CLAY	Moist	Firm	Fine	Unknown due to saturation	NIL	<5%	Sulphur/marine

			Port of Mackay – Operational Area 2 OP2 24			
General Location of Sa	mpling	Port of Mackay – Operational Area 2				
Site Number		OP2_	P2_24			
Date/Sample Time 28/09/18						
Water Depth at Site		~4.7m				
Type of Core Sampler	e Sampler Pi		n core			
Depth Retained		0.5m				
Weather Conditions /	sea state	Wind 8kts / glass				
Comments		Refus	al at 0.5m			
		PSD (9	6)			
Strata Change (m)	Gravel (9	%)	Sand (%)	Silt & Clay (%)		
0 – 0.5	0%		16%	84%		

No photo

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5	Grey	Silty sandy CLAY	Moist	Soft	Very coarse	Unknown due to saturation	1%	10%	Sulphur/marine
Refusal									

General Location of Sampling			Port of Mackay – Operational Area 2		
Site Number		OP2_3	32		
Date/Sample Time		28/09	/18, 0800		
Water Depth at Site			1		
Type of Core Sampler			Piston core		
Depth Retained		0.5m			
Weather Conditions /	sea state	Wind 8kts / glass			
Comments		Refusal at 0.5m			
		PSD (%	6)		
Strata Change (m)	Gravel (%)		Sand (%)	Silt & Clay (%)	
0 – 0.5	3		47	50	

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5	Grey	Silty sandy CLAY	Moist	Soft	Very coarse	Unknown due to saturation	1%	10%	Sulphur/marine
Refusal									

General Location of Sampling			Port of Mackay – Operational Area 2			
Site Number			OP2_33			
Date/Sample Time		28/09	/18, 0715			
Water Depth at Site						
Type of Core Sampler			core			
Depth Retained		0.5m				
Weather Conditions /	sea state	Wind 8kts / glass				
Comments		Refusal at 0.5m				
	PSD (%)					
Strata Change (m)	Gravel (%)		Sand (%)	Silt & Clay (%)		
0 – 0.5	2		44	54		

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5	Grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	1%	<5%	Sulphur/marine

General Location of Sampling	Port of Mackay – Operational Area 2			
Site Number	OP2_36			
Date/Sample Time	28/09/18, 1000			
Water Depth at Site	~9m			
Type of Core Sampler	Piston core			
Depth Retained	1.5m			
Weather Conditions / sea state	Wind 4kts / glass			
Comments	Refusal at 1.5m			
DCD (9/)				

Strata Change (m)	Gravel (%)	Sand (%)	Silt & Clay (%)
0 – 0.5	2	52	40
0.5 – 1.0	8	52	35
1.0 – 1.5	13	36	63

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5	Grey	Silty sandy CLAY	Moist	Soft	Fine to coarse	Unknown due to saturation	5%	5-10%	Sulphur/marine
0.5 – 1.0	Grey	Silty sandy CLAY	Moist	Soft-firm	Fine to coarse	Unknown due to saturation	5%	5-10%	Sulphur/marine
1.0 – 1.5	Grey	Sandy CLAY	Moist	Soft-firm	Fine to coarse	Unknown due to saturation	1%	1%	Sulphur/marine

General Location of Sampling	Port of Mackay – Operational Area 2		
Site Number	OP2_38 (T1, T2, T3)		
Date/Sample Time	28/09/18, 1300		
Water Depth at Site	~8m		
Type of Core Sampler	Piston core		
Depth Retained	0.5m		
Weather Conditions / sea state	Still		
Comments	Refusal at 0.5m		

PSD (%)

1.52 (75)							
Strata Change (m)	Gravel (%)	Sand (%)	Silt & Clay (%)				
0 – 0.5 (T1)	6%	52%	42%				
0 – 0.5 (T2)	4%	56%	40%				
0 – 0.5 (T3)	9%	56%	35%				

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5 (T1)	Grey	Silty sandy CLAY	Moist	Soft	Fine to coarse	Unknown due to saturation	NIL	5-10%	Sulphur/marine
0 – 0.5 (T2)	Grey	Silty sandy CLAY	Moist	Soft	Fine to coarse	Unknown due to saturation	NIL	5-10%	Sulphur/marine
0 – 0.5 (T3)	Grey	Silty sandy CLAY	Moist	Soft	Fine to coarse	Unknown due to saturation	NIL	5-10%	Sulphur/marine
Refusal									

General Location of Sampling	Port of Mackay – Operational Area 2
Site Number	OP2_42
Date/Sample Time	27/09/18, 1430
Water Depth at Site	~9m
Type of Core Sampler	Piston core
Depth Retained	1.5m
Weather Conditions / sea state	Wind 4kts / glass
Comments	Refusal at 1.5m


1.35 (70)							
Strata Change (m)	Gravel (%)	Sand (%)	Silt & Clay (%)				
0 – 0.5	8	56	36				
0.5 – 1.0	1	22	77				
1.0 – 1.5	1	35	64				

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5	Grey	Silty sandy CLAY	Wet	Soft	Coarse	Unknown due to saturation	5%	10%	Sulphur/marine
0.5 – 1.0	Grey	Sandy CLAY	Wet	Firm	Coarse	Unknown due to saturation	NIL	<5%	Sulphur/marine
1.0 – 1.5	Grey	Sandy CLAY	Wet	Firm	Coarse	Unknown due to saturation	NIL	<5%	Sulphur/marine
Refusal									

General Location of Sampling	Port of Mackay – Operational Area 2
Site Number	OP2_44
Date/Sample Time	28/09/18, 0930
Water Depth at Site	~8m
Type of Core Sampler	Piston core
Depth Retained	1.0m
Weather Conditions / sea state	Wind 4kts / glass
Comments	Refusal at 1.0m
	PCD (0()

	F3D (/	6)	
Strata Change (m)	Gravel (%)	Sand (%)	Silt & Clay (%)
0 – 0.5	7	54	39
0.5 – 1.0	3	44	53

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5	Grey	Silty sandy CLAY with gravel	Wet	Soft	Fine to coarse	Unknown due to saturation	8%	5%	Sulphur/marine
0.5 – 1.0	Grey	Silty sandy CLAY with gravel	Wet	Soft	Fine to coarse	Unknown due to saturation	8%	5%	Sulphur/marine
Refusal									

General Location of Sampling	Port of Mackay – Operational Area 2
Site Number	OP2_45
Date/Sample Time	28/09/18, 0745
Water Depth at Site	~4.7m
Type of Core Sampler	Piston core
Depth Retained	1.5m
Weather Conditions / sea state	Wind 4kts / glass
Comments	Refusal at 1.5m
	(4)

	PSD (%) Gravel (%) Sand (%) Silt & Clay (%) 4 45 41 55					
Strata Change (m)	Gravel (%)	Sand (%)	Silt & Clay (%)			
0 – 0.5	1	54	45			
0.5 – 1.0	4	41	55			
1.0 – 1.5	1	44	55			

Strata Change (m)	Colour	Field Texture	Moist.	Consist.	Sand Grain Size	Plasticity	% Stones	Shell/Grit/ Biota	Odour
0 – 0.5	Grey	Silty sandy CLAY	Wet	Soft	Fine	Unknown due to saturation	NIL	20%	Sulphur/marine
0.5 – 1.0	Grey	Silty sandy CLAY	Wet	Moderate	Large	Unknown due to saturation	NIL	30%	Sulphur/marine
1.0 – 1.5	Grey	Silty sandy CLAY	Wet	Moderate	Large	Unknown due to saturation	NIL	30%	Sulphur/marine
Refusal									

Appendix B Summary of ASS results

Table 1: Acid Sulfate Soils Results

Table 1: Acid Su	litate Solls Re	suits																			
				Screeni	ng Analysis			Actual Acidi	ty	Potenti	al Acidity	Acid	Neutralising Ca	pacity			Acid	Base Accounti	ing		
Sample	Sample type	Date	pH (F)	pH (Fox)	Change in pH(F) and pH (Fox)	Reaction Rate	pH KCI	sulfidic - Titratable Actual Acidity	Titratable Actual Acidity	Chromium Reducible Sulfur	acidity - Chromium Reducible Sulfur	Acid Neutralising Capacity	acidity - Acid Neutralising Capacity (a- 19A2)	sulfidic - Acid Neutralising Capacity	ANC Finenes s Factor	Net Acidity (sulfur units)	Net Acidity (acidity units)	Liming Rate	Net Acidity excluding ANC (acidity units)	Net Acidity excluding ANC (sulfur units)	Liming Rate excluding ANC
			pH Unit	pH Unit	pH Unit		pH Unit	% pyrite S	mole H+ / t	% S	mole H+/t	% CaCO3	mole H+ / t	% pyrite S		% S	mole H+ / t	kg CaCO3/t	mole H+ / t	% S	kg CaCO3/t
Guidelines for Samp Acid Sulfate Soils (A Action Criteria (> 10	ASS) in Queensla	and 1998 -		-	-	-		0.03	18	0.03	18	-	-	-	-	0.03	18	-	-	-	-
Laboratory Detection	on Limit - ALS		0.1	0.1	0.1		0.1	0.01	5	0.005	3	0.05	10	0.05	0.5	0.02	10	1	10	0.02	1
SB_45	Piston core	24/09/2018	8.6	6.3	2.3	2	8.4	<2	<0.02	0.06	37	7.38	1480	2.36	1.5	<0.02	<10	<1	0.06	37	3
SB_52	Piston core	24/09/2018	8.5	6.5	2	2	8.6	<2	<0.02	0.104	65	8.44	1690	2.7	1.5	<0.02	<10	<1	0.1	65	5
SB_58	Piston core	24/09/2018	8.7	6.4	2.3	2	8.8	<2	<0.02	0.14	88	8.07	1610	2.58	1.5	<0.02	<10	<1	0.14	88	6
B1_02 (T1)	Piston core	26/09/2018	8.4	6.6	1.8	2	8.9	<2	<0.02	0.108	68	8.66	1730	2.77	1.5	<0.02	<10	<1	0.11	68	5
B3_14	Piston core	26/09/2018	8.4	6.6	1.8	2	8.8	<2	<0.02	0.149	93	8.75	1750	2.8	1.5	<0.02	<10	<1	0.15	93	7
B4_01	Piston core	26/09/2018	8.6	6.8	1.8	2	8.7	<2	<0.02	0.167	104	8.94	1780	2.86	1.5	<0.02	<10	<1	0.17	104	8
B5_08	Piston core	26/09/2018	8.6	6.5	2.1	2	8.8	<2	<0.02	0.194	121	7.65	1530	2.45	1.5	<0.02	<10	<1	0.19	121	9
TB_26	Piston core	25/09/2018	8.3	6.5	1.8	2	8.8	<2	<0.02	0.146	91	9.42	1880	3.02	1.5	<0.02	<10	<1	0.14	91	7
OP2_18 (0-0.5)	Piston core	26/09/2018	8.8	6.5	2.3	2	9	<0.02	<2	0.256	160	4.23	846	1.36	1.5	<0.02	<10	<1	160	0.26	12
OP2_32 (0-0.5)	Piston core	28/09/2018	8.8	6.5	2.3	3	9	<0.02	<2	0.204	127	5.65	1130	1.81	1.5	<0.02	<10	<1	127	0.2	10
OP2_36 (0-0.5)	Piston core	28/09/2018	9	6.5	2.5	3	9.2	<0.02	<2	0.147	92	3.11	621	1	1.5	<0.02	<10	<1	92	0.15	7
OP2_36 (0.5-1.0)	Piston core	28/09/2018	8.8	6.6	2.2	2	9.1	<0.02	<2	0.14	88	2.38	475	0.76	1.5	<0.02	<10	<1	88	0.14	6
OP2_36 (1.0-1.5)	Piston core	28/09/2018	8.8	6.6	2.2	3	9.1	<0.02	<2	0.21	131	4.38	875	1.4	1.5	<0.02	<10	<1	131	0.21	10
OP2_33 (0-0.5)	Piston core	28/09/2018																			
OP2_21 (0-0.5)	Piston core	28/09/2018																			
OP2_38 (0-0.5) T1	Piston core	28/09/2018																			
OP2_44 (0-0.5)	Piston core	28/09/2018																			
OP2_44 (0.5-1.0)	Piston core	28/09/2018																			
OP2-45 (0-0.5)	Piston core	28/09/2018																			
OP2-45 (0.5-1.0)	Piston core	28/09/2018																			
OP2-45 (1.0-1.5)	Piston core	28/09/2018																			
Min			8.3	6.3	1.8	2	8.4			0.06	37	2.38	475	0.76					0.06	0.14	3
Max			9	6.8	2.5	3	9.2			0.256	160	9.42	1880	3.02					160	121	12
Mean Notes			8.6	6.5	2.1	2.2	8.9			0.2	97.3	6.7	1338.2	2.1					46.1	51.4	7.3

Notes

- Denotes no criteria for that parameter

Results with a yellow background and highlighted in red indicate concentrations exceeding guidelines.

Not tested

Reaction rate is a subjective assessment of the strength of the reaction to hydrogen peroxide: slight (minor bubbling = score of 1) to very high (violent with frothing and heat produced = score of 4)

Table 2: Salinity	and Organic	Matter res	uito	Salini	ty and Organic	Matter			Text	ure (ALS re	sults)	
Sample	Sample Sample type Date		Total Soluble Salts	Chloride	Electrical Conductivity @ 25°C	Organic Matter (ALS)	Organic Matter (Trilab/ALS)	Clay	Silt	Sand	Gravel	Cobbles
Laboratory Detection	on Limit ALC		mg/kg 5	mg/kg 10	μS/cm	% 0.5	% 0.5	%	%	%	%	%
SB_02	Piston core	24/09/2018	9	10		0.5	0.5	16	13	52	19	<1
 SB_16	Piston core	24/09/2018						17	75	8	<1	<1
SB_40	Piston core	24/09/2018						40	43	16	1	<1
SB_45	Piston core	24/09/2018	13200	8410	4050	1.4	1.2	5	6	86	3	<1
SB_50	Piston core	24/09/2018						4	1	95	<1	<1
SB_52	Piston core	24/09/2018	22600	25000	6950	2.9		34	42	24	<1	<1
SB_58	Piston core	24/09/2018	22100	21600	6810	3		36	30	34	<1	<1
SB_79	Piston core	24/09/2018						36	41	23	<1	<1
B1_02 (T1)	Piston core	26/09/2018	21700	22200	6690	2.4		28	35	36	1	<1
B1_07	Piston core	26/09/2018					4.6	46	24	27	3	<1
B3_14	Piston core	26/09/2018	24200	28100	7450	3	4.2	40	43	17	<1	<1
B4_01	Piston core	26/09/2018	24600	32500	7570	3.2	3.9	37	52	11	<1	<1
B5_08	Piston core	26/09/2018	21500	21100	6610	2.7		43	29	27	1	<1
B5_10	Piston core	26/09/2018					3.3	42	32	26	<1	<1
TB_02	Piston core	25/09/2018						34	36	29	1	<1
TB_05	Piston core	25/09/2018					5.9	40	34	24	2	<1
TB_12	Piston core	25/09/2018						46	42	12	<1	<1
TB_18	Piston core	25/09/2018						34	53	13	<1	<1
TB_26	Piston core	25/09/2018	24400	35500	7500	3		44	52	4	<1	<1
TB_29	Piston core	25/09/2018						36	53	11	<1	<1
OP2_18 (0-0.5)	Piston core	26/09/2018	13400	9570	4110	1.5	1	34	22	40	4	<1
OP2_21 (0-0.5)	Piston core	28/09/2018						37	30	31	2	<1
OP2_24 (0-0.5)	Piston core	28/09/2018					1.8	40	44	16	0	
OP2_32 (0-0.5)	Piston core	28/09/2018	13700	10800	4220	1.6		31	19	47	3	<1
OP2_33 (0-0.5)	Piston core	28/09/2018						29	25	44	2	<1
OP2_36 (0-0.5)	Piston core	28/09/2018	11100	8020	3430	1		24	16	52	8	<1
OP2_36 (0.5-1.0)	Piston core	28/09/2018	14200	11900	4360	1.4		24	11	52	13	<1
OP2_36 (1.0-1.5)	Piston core	28/09/2018	13300	10200	4080	1.5		34	29	36	1	<1
OP2_38 (0-0.5) T1	Piston core	28/09/2018						25	17	52	6	<1
OP2_38 (0-0.5) T2	Piston core	28/09/2018						23	17	56	4	<1
OP2_38 (0-0.5) T3	Piston core	28/09/2018						20	15	56	9	<1
OP2_44 (0-0.5)	Piston core	28/09/2018						21	18	54	7	<1
OP2_44 (0.5-1.0)	Piston core	28/09/2018						28	25	44	3	<1
OP2-45 (0-0.5)	Piston core	28/09/2018						24	21	54	1	<1
OP2-45 (0.5-1.0)	Piston core	28/09/2018						32	23	41	4	<1
OP2-45 (1.0-1.5)	Piston core	28/09/2018						29	26	44	1	<1
OP2 _42 / 0.0-0.5	Piston core	27/09/2018						15	21	56	8	<1
OP2 _42 / 0.5-1.0	Piston core	27/09/2018						27	50	22	1	<1
OP2 _42 / 1.0-1.5 Min	Piston core	27/09/2018	11100	8020	3430	1.0	1.0	30 4	34 1	35 4	1 <1	<1 <1
Max Mean			24600 18462	35500 18838	7570 5679	3.2 2.2	5.9 3.2	46 31	53 30	95 37	13	<1 <1
Notes			.0102	.0000	00.0		U.L	0,	- 00	, J,		

Organic matter testing scheduled with Trilab was subcontracted to ALS, i.e. all organic matter results determined by ALS

Not tested

Geotechnical lab result

Appendix C ALS Laboratory documentation

CERTIFICATE OF ANALYSIS

Work Order : **EB1823888** Page : 1 of 20

Amendment : 3

Client : ADVISIAN PTY LTD : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4000

 Telephone
 : --- Telephone
 : +61 7 3552 8662

 Project
 : 301001.02018 - Port of Mackay Sediment Sampling
 Date Samples Received
 : 03-Oct-2018 09:10

Order number : Date Analysis Commenced : 08-Oct-2018

C-O-C number : --- Issue Date : 29-Nov-2018 08:21

Sampler : NICHOLAS BAINTON

Site :

Quote number : BN/185/18

No. of samples analysed : 19

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 19

- General Comments
- Analytical Results

No. of samples received

Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Andrew Epps	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Andrew Epps	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Sarah Ashworth	Laboratory Manager - Brisbane	Brisbane Organics, Stafford, QLD
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Inorganics, Stafford, QLD
Tom Maloney	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

Page : 3 of 20

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EG020-SD (Total Metals in Sediments by ICP-MS): Samples EB1823888-004 (OP2 44 (0-0.5)) and -014 (OP2 36 (0.5-1.0))show poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- EP090 Organotin: Sample 'D7' shows poor matrix spike recovery for MBT due to matrix interference.
- Specialty Organics analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- Amendment (30/10/2018): This report has been amended and re-released to allow the reporting of additional As analytical data.
- Amendment (2/11/2018): This report has been amended and re-released to allow the reporting of additional Chloride analytical data.
- Amendment (21/11/2018): This report has been amended and re-released to allow samples 'OP2 42...' to be added to this workorder from EB1823470.
- EA151: Due to limited sample volume settlebility results were unable to be reported for samples 20-22.
- EP090 Organotin: Sample 'OP2 44 (0.5-1.0)' required dilution due to the presence of high level contaminants. LOR values have been adjusted accordingly.
- EP090 Organotin: Sample 'OP2_44 (0.5-1.0)' shows poor matrix spike recovery due to matrix interference. Confirmed by re-extraction and re-analysis.
- EP090 Organotin: Sample 'OP2 42 / 0.5-1.0' shows poor matrix spike recovery for MBT due to matrix interference. Confirmed by re-extraction and re-analysis.
- EP090 Organotin: High LCS recovery deemed acceptable as all associated analyte results are less than LOR
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.
- EA151: ALS does not hold NATA accreditation for Settleability.

: 4 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_44 (0-0.5)	OP2_44 (0.5-1.0)	OP2-45 (0-0.5)	OP2-45 (0.5-1.0)	OP2-45 (1.0-1.5)
	CI	ient sampli	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-004	EB1823888-005	EB1823888-006	EB1823888-007	EB1823888-008
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%	32.0	36.7	39.6	37.9	48.1
EA150: Particle Sizing								
+75µm		1	%	58	41	46	38	39
+150µm		1	%	46	29	28	29	25
+300µm		1	%	34	17	15	20	11
+425µm		1	%	29	14	10	16	8
+600µm		1	%	23	11	6	12	5
+1180µm		1	%	12	5	2	7	2
+2.36mm		1	%	5	2	<1	3	<1
+4.75mm		1	%	2	1	<1	1	<1
+9.5mm		1	%	<1	<1	<1	<1	<1
+19.0mm		1	%	<1	<1	<1	<1	<1
+37.5mm		1	%	<1	<1	<1	<1	<1
+75.0mm		1	%	<1	<1	<1	<1	<1
EA150: Soil Classification based on Pa	rticle Size							
Clay (<2 μm)		1	%	21	28	24	32	29
Silt (2-60 µm)		1	%	18	25	21	23	26
Sand (0.06-2.00 mm)		1	%	54	44	54	41	44
Gravel (>2mm)		1	%	7	3	1	4	1
Cobbles (>6cm)		1	%	<1	<1	<1	<1	<1
EA151: Settleability 10%								
ø Underflow Density		0.01	g/cm3	1.39	1.27	1.24	1.21	1.22
ø Underflow Solids		0.1	%	40.0	32.9	31.7	29.6	31.5
ø Settling Rate @ 50% of Settlement		0.001	mm/min	3.80	2.20	2.80	2.20	2.40
ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.200	0.050	0.067	0.058	0.017
ø Clarity		-	-	Clear	Clear	Clear	Clear	Clear
EA151: Settleability 20%								
ø Underflow Density		0.01	g/cm3	1.36	1.32	1.29	1.25	1.31
ø Underflow Solids		0.1	%	43.4	37.0	36.8	34.7	36.4
ø Settling Rate @ 50% of Settlement		0.001	mm/min	1.20	0.800	0.800	0.400	1.20
ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.033	0.008	0.008	0.009	0.008
ø Clarity		-	-	Clear	Clear	Clear	Clear	Clear
EA152: Soil Particle Density								
Ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.67	2.67	2.77	2.67	2.66

: 5 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_44 (0-0.5)	OP2_44 (0.5-1.0)	OP2-45 (0-0.5)	OP2-45 (0.5-1.0)	OP2-45 (1.0-1.5)
	Cli	ent sampli	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-004	EB1823888-005	EB1823888-006	EB1823888-007	EB1823888-008
				Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sedimer	nts by ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	4.88	6.31	5.44	6.36	9.96
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	14.4	17.7	15.8	19.2	26.0
Copper	7440-50-8	1.0	mg/kg	11.7	22.0	13.9	15.5	16.8
Lead	7439-92-1	1.0	mg/kg	16.1	10.2	9.1	11.7	13.2
Nickel	7440-02-0	1.0	mg/kg	9.1	10.0	8.8	10.9	15.9
Zinc	7440-66-6	1.0	mg/kg	38.8	47.2	39.6	45.6	45.8
EG035T: Total Recoverable Mercui	ry by FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.01	0.02	0.01	0.02	0.02
EP003: Total Organic Carbon (TOC) in Soil							
Total Organic Carbon		0.02	%	0.43	0.80	0.82	0.67	0.90
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	2	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	1	26	1	2	2
Tributyltin	56573-85-4	0.5	μgSn/kg	3.6	148	1.9	2.2	3.2
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	102	126	111	110	82.9

: 6 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_32 (0-0.5)	OP2_38 (0-0.5) T1	OP2_38 (0-0.5) T2	OP2_38 (0-0.5) T3	OP2_36 (0-0.5)
	Cli	ent sampli	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-009	EB1823888-010	EB1823888-011	EB1823888-012	EB1823888-013
				Result	Result	Result	Result	Result
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	4220				3430
EA014 Total Soluble Salts								
Total Soluble Salts		5	mg/kg	13700				11100
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.0				9.2
Titratable Actual Acidity (23F)		2	mole H+/t	<2				<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02				<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.204				0.147
acidity - Chromium Reducible Sulfur		10	mole H+/t	127				92
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	5.65				3.11
acidity - Acid Neutralising Capacity		10	mole H+/t	1130				621
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	1.81				1.00
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5				1.5
Net Acidity (sulfur units)		0.02	% S	<0.02				<0.02
Net Acidity (acidity units)		10	mole H+ / t	<10				<10
Liming Rate		1	kg CaCO3/t	<1				<1
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.20				0.15
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	127				92
Liming Rate excluding ANC		1	kg CaCO3/t	10				7
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	8.8				9.0
pH (Fox)		0.1	pH Unit	6.5				6.5
ỡ Reaction Rate		1	-	3				3
EA055: Moisture Content (Dried @ 105-110	°C)							
Moisture Content		0.1	%	40.2	31.4	30.4	35.8	28.9
EA150: Particle Sizing								
+75µm		1	%		53	55	60	
+150µm		1	%		42	41	46	

: 7 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_32 (0-0.5)	OP2_38 (0-0.5) T1	OP2_38 (0-0.5) T2	OP2_38 (0-0.5) T3	OP2_36 (0-0.5)
,	Clie	ent samplii	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-009	EB1823888-010	EB1823888-011	EB1823888-012	EB1823888-013
				Result	Result	Result	Result	Result
EA150: Particle Sizing - Continued								
+300µm		1	%		30	32	34	
+425µm		1	%		24	27	29	
+600µm		1	%		19	19	22	
+1180µm		1	%		10	9	12	
+2.36mm		1	%		4	1	7	
+4.75mm		1	%		2	<1	4	
+9.5mm		1	%		<1	<1	<1	
+19.0mm		1	%		<1	<1	<1	
+37.5mm		1	%		<1	<1	<1	
+75.0mm		1	%		<1	<1	<1	
EA150: Soil Classification based on Part	icle Size							
Clay (<2 μm)		1	%		25	23	20	
Silt (2-60 µm)		1	%		17	17	15	
Sand (0.06-2.00 mm)		1	%		52	56	56	
Gravel (>2mm)		1	%		6	4	9	
Cobbles (>6cm)		1	%		<1	<1	<1	
EA151: Settleability 10%								
ø Underflow Density		0.01	g/cm3		1.34	1.26	1.40	
Ø Underflow Solids		0.1	%		37.3	31.8	39.5	
Ø Settling Rate @ 50% of Settlement		0.001	mm/min		2.60	2.20	3.20	
ø Settling Rate @ 90% of Settlement		0.001	mm/min		0.117	0.067	0.117	
Ø Clarity		-	-		Clear	Clear	Clear	
EA151: Settleability 20%								
ø Underflow Density		0.01	g/cm3		1.36	1.29	1.38	
Ø Underflow Solids		0.1	%		40.8	36.9	42.8	
Ø Settling Rate @ 50% of Settlement		0.001	mm/min		1.20	1.00	1.00	
ø Settling Rate @ 90% of Settlement		0.001	mm/min		0.008	0.009	0.008	
Ø Clarity		-	-		Clear	Clear	Clear	
EA152: Soil Particle Density								
Ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3		2.68	2.68	2.69	
ED045G: Chloride by Discrete Analyser			3,					
Chloride Chloride	16887-00-6	10	mg/kg	10800				8020
		10	mg/ng	10000				0020
EG020-SD: Total Metals in Sediments by Arsenic		1.00	ma/ka	7.58	5.50	4.67	4.79	4.52
Arsenic	7440-38-2	1.00	mg/kg	7.30	5.50	4.07	4./9	4.52

: 8 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_32 (0-0.5)	OP2_38 (0-0.5) T1	OP2_38 (0-0.5) T2	OP2_38 (0-0.5) T3	OP2_36 (0-0.5)
	Cli	ent sampli	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-009	EB1823888-010	EB1823888-011	EB1823888-012	EB1823888-013
				Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sedim	ents by ICPMS - Continue	ed						
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	16.6	14.6	13.1	12.8	12.9
Copper	7440-50-8	1.0	mg/kg	23.3	11.9	11.1	9.7	11.0
Lead	7439-92-1	1.0	mg/kg	10.9	12.8	7.7	7.1	7.2
Nickel	7440-02-0	1.0	mg/kg	9.4	8.4	7.4	7.2	7.6
Zinc	7440-66-6	1.0	mg/kg	51.7	37.2	30.1	27.3	29.3
EG035T: Total Recoverable Merc	cury by FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.02	0.01	0.01	0.01	0.01
EP003: Total Organic Carbon (TC	C) in Soil							
Total Organic Carbon		0.02	%	0.64	0.40	0.64	0.49	0.49
EP004: Organic Matter								
Organic Matter		0.5	%	1.6				1.0
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	1	1	2	1	<1
Tributyltin	56573-85-4	0.5	μgSn/kg	2.4	1.5	4.4	3.3	2.7
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	108	108	110	94.8	91.2

: 9 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	OP2_36 (0.5-1.0)	OP2_36 (1.0-1.5)	OP2_33 (0-0.5)	D7	OP2_21 (0-0.5)
	Cli	ient sampli	ing date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-014	EB1823888-015	EB1823888-016	EB1823888-017	EB1823888-018
				Result	Result	Result	Result	Result
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	4360	4080			
EA014 Total Soluble Salts								
Total Soluble Salts		5	mg/kg	14200	13300			
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.1	9.1			
Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2			
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02			
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.140	0.210			
acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	88	131			
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	2.38	4.38			
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	475	875			
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	0.76	1.40			
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5			
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02			
Net Acidity (acidity units)		10	mole H+ / t	<10	<10			
Liming Rate		1	kg CaCO3/t	<1	<1			
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.14	0.21			
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	88	131			
Liming Rate excluding ANC		1	kg CaCO3/t	6	10			
EA037: Ass Field Screening Analysis								
୭ pH (F)		0.1	pH Unit	8.8	8.8			
pH (Fox)		0.1	pH Unit	6.6	6.6			
ỡ Reaction Rate		1	-	2	3			
EA055: Moisture Content (Dried @ 105-110°	°C)							
Moisture Content		0.1	%	40.0	38.3	38.1	36.1	34.4
EA150: Particle Sizing								
+75μm		1	%					27
+150µm		1	%					17

: 10 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_36 (0.5-1.0)	OP2_36 (1.0-1.5)	OP2_33 (0-0.5)	D7	OP2_21 (0-0.5)
(mann conj	Clie	ent samplii	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-014	EB1823888-015	EB1823888-016	EB1823888-017	EB1823888-018
Compound	Crito ritambor			Result	Result	Result	Result	Result
EA150: Particle Sizing - Continued								
+300µm		1	%					11
+425µm		1	%					9
+600µm		1	%					7
+1180µm		1	%					3
+2.36mm		1	%					<1
+4.75mm		1	%					<1
+9.5mm		1	%					<1
+19.0mm		1	%					<1
+37.5mm		1	%					<1
+75.0mm		1	%					<1
EA150: Soil Classification based on Part	ticle Size							
Clay (<2 μm)		1	%					37
Silt (2-60 µm)		1	%					30
Sand (0.06-2.00 mm)		1	%					31
Gravel (>2mm)		1	%					2
Cobbles (>6cm)		1	%					<1
EA151: Settleability 10%								
ø Underflow Density		0.01	g/cm3					1.24
Ø Underflow Solids		0.1	%					33.7
Ø Settling Rate @ 50% of Settlement		0.001	mm/min					0.400
ø Settling Rate @ 90% of Settlement		0.001	mm/min					0.017
Ø Clarity		-	-					Clear
EA151: Settleability 20%								
ø Underflow Density		0.01	g/cm3					1.31
Ø Underflow Solids		0.1	%					38.1
Ø Settling Rate @ 50% of Settlement		0.001	mm/min					1.60
ø Settling Rate @ 90% of Settlement		0.001	mm/min					0.009
Ø Clarity		-	-					Clear
EA152: Soil Particle Density								
Ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3					2.66
ED045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg	11900	10200			
EG020-SD: Total Metals in Sediments by	ICPMS							
Arsenic	7440-38-2	1.00	mg/kg	7.44	7.40	6.72	7.46	6.27

: 11 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_36 (0.5-1.0)	OP2_36 (1.0-1.5)	OP2_33 (0-0.5)	D7	OP2_21 (0-0.5)
·	Cli	ient sampli	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-014	EB1823888-015	EB1823888-016	EB1823888-017	EB1823888-018
				Result	Result	Result	Result	Result
EG020-SD: Total Metals in Sediments	by ICPMS - Continue	ed						
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1.0	mg/kg	22.2	21.1	18.6	20.0	19.1
Copper	7440-50-8	1.0	mg/kg	19.1	17.9	23.1	29.5	15.4
Lead	7439-92-1	1.0	mg/kg	12.7	12.3	11.4	11.1	11.5
Nickel	7440-02-0	1.0	mg/kg	12.7	12.2	10.5	11.3	11.2
Zinc	7440-66-6	1.0	mg/kg	53.5	50.7	47.2	54.3	43.9
EG035T: Total Recoverable Mercury b	by FIMS							
Mercury	7439-97-6	0.01	mg/kg	0.02	0.02	0.02	0.02	0.02
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon		0.02	%	0.36	0.59	0.56	0.51	0.54
EP004: Organic Matter								
Organic Matter		0.5	%	1.4	1.5			
EP080/071: Total Recoverable Hydroc								
>C10 - C16 Fraction	arbons - NEPW 201	3	mg/kg			<3	<3	
>C16 - C34 Fraction		3	mg/kg			10	4	
>C34 - C40 Fraction		5	mg/kg			<5	<5	
>C10 - C40 Fraction (sum)		3	mg/kg			10	4	
>C10 - C16 Fraction minus Naphthalene		3	mg/kg			<3	<3	
(F2)		Ü	mg/kg					
EP080-SD / EP071-SD: Total Petroleun	n Hudun nauh ana							
C6 - C9 Fraction	II Hydrocarbons	3	mg/kg			<3	<3	
C10 - C14 Fraction		3	mg/kg			<3	<3	
C15 - C28 Fraction		3	mg/kg			5	<3	
C29 - C36 Fraction		5	mg/kg			6	<5	
^ C10 - C36 Fraction (sum)		3	mg/kg			11	<3	
			9/119			11		
EP080-SD / EP071-SD: Total Recovera C6 - C10 Fraction		3	ma/ka			<3	<3	
	C6_C10_PTEX	3.0	mg/kg			<3.0	<3.0	
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	3.0	mg/kg			\3.0	\3.0	
EP080-SD: BTEXN	74.40.0	0.2	ma/ka			<0.2	<0.2	I
Benzene	71-43-2	0.2	mg/kg			<0.2	<0.2	
Toluene	108-88-3	0.2	mg/kg			<0.2	<0.2	
Ethylbenzene	100-41-4	0.2	mg/kg			<0.2	<0.2	
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg			<0.2	<0.2	

: 12 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL		Clie	ent sample ID	OP2_36 (0.5-1.0)	OP2_36 (1.0-1.5)	OP2_33 (0-0.5)	D7	OP2_21 (0-0.5)
(Matrix: SOIL)		inut name !!	no doto (timo -	00.0 0040.00-00	20.0 2040.00-00	00.0 0040.00-00	20.0 2040.00-00	00.0 0040.00.00
			ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-014	EB1823888-015	EB1823888-016	EB1823888-017	EB1823888-018
				Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
ortho-Xylene	95-47-6	0.2	mg/kg			<0.2	<0.2	
^ Total Xylenes		0.5	mg/kg			<0.5	<0.5	
^ Sum of BTEX		0.2	mg/kg			<0.2	<0.2	
Naphthalene	91-20-3	0.2	mg/kg			<0.2	<0.2	
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	<1
Dibutyltin	1002-53-5	1	μgSn/kg	2	2	<1	<1	2
Tributyltin	56573-85-4	0.5	μgSn/kg	3.4	11.4	<0.5	<0.5	3.4
EP131A: Organochlorine Pesticides								
Aldrin	309-00-2	0.50	μg/kg			<0.50	<0.50	
alpha-BHC	319-84-6	0.50	μg/kg			<0.50	<0.50	
beta-BHC	319-85-7	0.50	μg/kg			<0.50	<0.50	
delta-BHC	319-86-8	0.50	μg/kg			<0.50	<0.50	
4.4`-DDD	72-54-8	0.50	μg/kg			<0.50	<0.50	
4.4`-DDE	72-55-9	0.50	μg/kg			<0.50	<0.50	
4.4`-DDT	50-29-3	0.50	μg/kg			<0.50	<0.50	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.50	μg/kg			<0.50	<0.50	
	0-2							
Dieldrin	60-57-1	0.50	μg/kg			<0.50	<0.50	
alpha-Endosulfan	959-98-8	0.50	μg/kg			<0.50	<0.50	
beta-Endosulfan	33213-65-9	0.50	μg/kg			<0.50	<0.50	
Endosulfan sulfate	1031-07-8	0.50	μg/kg			<0.50	<0.50	
^ Endosulfan (sum)	115-29-7	0.50	μg/kg			<0.50	<0.50	
Endrin	72-20-8	0.50	μg/kg			<0.50	<0.50	
Endrin aldehyde	7421-93-4	0.50	μg/kg			<0.50	<0.50	
Endrin ketone	53494-70-5	0.50	μg/kg			<0.50	<0.50	
Heptachlor	76-44-8	0.50	μg/kg			<0.50	<0.50	
Heptachlor epoxide	1024-57-3	0.50	μg/kg			<0.50	<0.50	
Hexachlorobenzene (HCB)	118-74-1	0.50	μg/kg			<0.50	<0.50	
gamma-BHC	58-89-9	0.25	μg/kg			<0.25	<0.25	
Methoxychlor	72-43-5	0.50	μg/kg			<0.50	<0.50	
cis-Chlordane	5103-71-9	0.50	μg/kg			<0.50	<0.50	
trans-Chlordane	5103-74-2	0.50	μg/kg			<0.50	<0.50	
^ Total Chlordane (sum)		0.50	μg/kg			<0.50	<0.50	
Oxychlordane	27304-13-8	0.50	μg/kg			<0.50	<0.50	

: 13 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_36 (0.5-1.0)	OP2_36 (1.0-1.5)	OP2_33 (0-0.5)	D7	OP2_21 (0-0.5)
·	Cli	ent sampli	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	LOR	Unit	EB1823888-014	EB1823888-015	EB1823888-016	EB1823888-017	EB1823888-018
				Result	Result	Result	Result	Result
EP131A: Organochlorine Pesticio	les - Continued							
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.50	μg/kg			<0.50	<0.50	
EP132B: Polynuclear Aromatic H	vdrocarbons							
Naphthalene	91-20-3	5	μg/kg			<5	<5	
2-Methylnaphthalene	91-57-6	5	μg/kg			<5	<5	
Acenaphthylene	208-96-8	4	μg/kg			<4	6	
Acenaphthene	83-32-9	4	μg/kg			<4	<4	
Fluorene	86-73-7	4	μg/kg			<4	<4	
Phenanthrene	85-01-8	4	μg/kg			12	16	
Anthracene	120-12-7	4	μg/kg			<4	5	
Fluoranthene	206-44-0	4	μg/kg			37	67	
Pyrene	129-00-0	4	μg/kg			38	58	
Benz(a)anthracene	56-55-3	4	μg/kg			25	36	
Chrysene	218-01-9	4	μg/kg			22	30	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg			26	28	
Benzo(k)fluoranthene	207-08-9	4	μg/kg			15	12	
Benzo(e)pyrene	192-97-2	4	μg/kg			15	20	
Benzo(a)pyrene	50-32-8	4	μg/kg			26	36	
Perylene	198-55-0	4	μg/kg			9	12	
Benzo(g.h.i)perylene	191-24-2	4	μg/kg			16	23	
Dibenz(a.h)anthracene	53-70-3	4	μg/kg			4	5	
Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg			15	20	
Coronene	191-07-1	5	μg/kg			<5	6	
Sum of PAHs		4	μg/kg			260	380	
P080-SD: TPH(V)/BTEX Surroga	tes							
1.2-Dichloroethane-D4	17060-07-0	0.2	%			87.1	95.2	
Toluene-D8	2037-26-5	0.2	%			98.1	98.7	
4-Bromofluorobenzene	460-00-4	0.2	%			108	107	
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	102	124	90.8	89.4	128
EP131S: OC Pesticide Surrogate								
Dibromo-DDE	21655-73-2	0.50	%			80.3	67.1	
EP132T: Base/Neutral Extractable								
2-Fluorobiphenyl	321-60-8	10	%			79.3	91.3	
Anthracene-d10	1719-06-8	10	%			88.6	83.5	

: 14 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_36 (0.5-1.0)	OP2_36 (1.0-1.5)	OP2_33 (0-0.5)	D7	OP2_21 (0-0.5)
	Cli	ent sampli	ng date / time	28-Sep-2018 00:00				
Compound	CAS Number	CAS Number LOR Unit		EB1823888-014	EB1823888-015	EB1823888-016	EB1823888-017	EB1823888-018
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractal	ble Surrogates - Continued							
4-Terphenyl-d14	1718-51-0	10	%			76.3	79.2	

: 15 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	OP2_18 (0-0.5)	OP2_42 / 0.0-0.5	OP2_42 / 0.5-1.0	OP2_42 / 1.0-1.5	
	Cli	ient sampli	ing date / time	26-Sep-2018 00:00	27-Sep-2018 00:00	27-Sep-2018 00:00	27-Sep-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1823888-019	EB1823888-020	EB1823888-021	EB1823888-022	
				Result	Result	Result	Result	
EA010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	4110				
EA014 Total Soluble Salts								
Total Soluble Salts		5	mg/kg	13400				
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.0				
Titratable Actual Acidity (23F)		2	mole H+/t	<2				
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02				
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.256				
acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	160				
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	4.23				
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+/t	846				
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	1.36				
(s-19A2) EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5				
Net Acidity (sulfur units)		0.02	% S	<0.02				
Net Acidity (acidity units)		10	mole H+/t	<10				
Liming Rate		1	kg CaCO3/t	<1				
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.26				
Net Acidity excluding ANC (acidity units)		10	mole H+/t	160				
Liming Rate excluding ANC		1	kg CaCO3/t	12				
EA037: Ass Field Screening Analysis								
ø pH (F)		0.1	pH Unit	8.8				
ø pH (Fox)		0.1	pH Unit	6.5				
ø Reaction Rate		1	-	2				
EA055: Moisture Content (Dried @ 105-110	°C)							
Moisture Content		0.1	%	39.6	28.2	38.8	43.0	
EA150: Particle Sizing								
+75µm		1	%		60	13	22	
+150µm		1	%		51	9	15	

: 16 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_18 (0-0.5)	OP2_42 / 0.0-0.5	OP2_42 / 0.5-1.0	OP2_42 / 1.0-1.5	
	Clie	ent sampli	ng date / time	26-Sep-2018 00:00	27-Sep-2018 00:00	27-Sep-2018 00:00	27-Sep-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1823888-019	EB1823888-020	EB1823888-021	EB1823888-022	
·				Result	Result	Result	Result	
EA150: Particle Sizing - Continued								
+300µm		1	%		44	6	10	
+425µm		1	%		39	4	8	
+600µm		1	%		33	2	6	
+1180µm		1	%		15	1	2	
+2.36mm		1	%		5	<1	<1	
+4.75mm		1	%		<1	<1	<1	
+9.5mm		1	%		<1	<1	<1	
+19.0mm		1	%		<1	<1	<1	
+37.5mm		1	%		<1	<1	<1	
+75.0mm		1	%		<1	<1	<1	
EA150: Soil Classification based on Pa	rticle Size							
Clay (<2 μm)		1	%		15	27	30	
Silt (2-60 µm)		1	%		21	50	34	
Sand (0.06-2.00 mm)		1	%		56	22	35	
Gravel (>2mm)		1	%		8	1	1	
Cobbles (>6cm)		1	%		<1	<1	<1	
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3		2.61	2.58	2.63	
ED045G: Chloride by Discrete Analyse								
Chloride	16887-00-6	10	mg/kg	9570				
EG020-SD: Total Metals in Sediments b								
Arsenic	7440-38-2	1.00	mg/kg	7.18	3.65	6.55	7.58	
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	
Chromium	7440-47-3	1.0	mg/kg	18.1	10.2	16.7	21.0	
Copper	7440-50-8	1.0	mg/kg	25.1	8.2	15.7	17.0	
Lead	7439-92-1	1.0	mg/kg	23.9	6.3	12.8	14.4	
Nickel	7440-02-0	1.0	mg/kg	10.4	6.2	10.5	12.4	
Zinc	7440-66-6	1.0	mg/kg	223	21.7	42.7	44.5	
EG035T: Total Recoverable Mercury by								
Mercury	7439-97-6	0.01	mg/kg	0.02				
EG035T: Total Recoverable Mercury by								
Mercury	7439-97-6	0.01	mg/kg		<0.01	0.02	0.05	
EP003: Total Organic Carbon (TOC) in								
Total Organic Carbon (TOC) in		0.02	%	0.56	0.24	0.55	0.76	
Total Organic Garbon		0.02	/0	0.50	0.24	0.55	0.70	

: 17 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_18 (0-0.5)	OP2_42 / 0.0-0.5	OP2_42 / 0.5-1.0	OP2_42 / 1.0-1.5	
	Cli	ient sampli	ing date / time	26-Sep-2018 00:00	27-Sep-2018 00:00	27-Sep-2018 00:00	27-Sep-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1823888-019	EB1823888-020	EB1823888-021	EB1823888-022	
			•	Result	Result	Result	Result	
EP004: Organic Matter								
Organic Matter		0.5	%	1.5				
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fractio	ns					
>C10 - C16 Fraction		3	mg/kg		<3	<3	3	
>C16 - C34 Fraction		3	mg/kg		6	9	12	
>C34 - C40 Fraction		5	mg/kg		<5	6	5	
>C10 - C40 Fraction (sum)		3	mg/kg		6	15	20	
>C10 - C16 Fraction minus Naphthalene		3	mg/kg		<3	<3	3	
(F2)								
EP080-SD / EP071-SD: Total Petroleun	n Hydrocarbons							
C6 - C9 Fraction		3	mg/kg		<3	<3	<3	
C10 - C14 Fraction		3	mg/kg		<3	<3	3	
C15 - C28 Fraction		3	mg/kg		4	6	8	
C29 - C36 Fraction		5	mg/kg		<5	6	7	
^ C10 - C36 Fraction (sum)		3	mg/kg		4	12	18	
EP080-SD / EP071-SD: Total Recovera	ble Hydrocarbons							
C6 - C10 Fraction	C6_C10	3	mg/kg		<3	<3	<3	
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	3.0	mg/kg		<3.0	<3.0	<3.0	
(F1)								
EP080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg		<0.2	<0.2	<0.2	
Toluene	108-88-3	0.2	mg/kg		<0.2	<0.2	<0.2	
Ethylbenzene	100-41-4	0.2	mg/kg		<0.2	<0.2	<0.2	
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg		<0.2	<0.2	<0.2	
ortho-Xylene	95-47-6	0.2	mg/kg		<0.2	<0.2	<0.2	
^ Total Xylenes		0.5	mg/kg		<0.5	<0.5	<0.5	
^ Sum of BTEX		0.2	mg/kg		<0.2	<0.2	<0.2	
Naphthalene	91-20-3	0.2	mg/kg		<0.2	<0.2	<0.2	
EP090: Organotin Compounds								
Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	<1	<1	
Dibutyltin	1002-53-5	1	μgSn/kg	2	1	1	<1	
Tributyltin	56573-85-4	0.5	μgSn/kg	3.4	6.0	0.9	<0.5	
EP131A: Organochlorine Pesticides								
Aldrin	309-00-2	0.50	μg/kg		<0.50	<0.50	<0.50	
alpha-BHC	319-84-6	0.50	μg/kg		<0.50	<0.50	<0.50	

: 18 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_18 (0-0.5)	OP2_42 / 0.0-0.5	OP2_42 / 0.5-1.0	OP2_42 / 1.0-1.5	
	Client sampling date / time		26-Sep-2018 00:00	27-Sep-2018 00:00	27-Sep-2018 00:00	27-Sep-2018 00:00		
Compound	CAS Number	LOR	Unit	EB1823888-019	EB1823888-020	EB1823888-021	EB1823888-022	
,				Result	Result	Result	Result	
EP131A: Organochlorine Pesticio	des - Continued							
beta-BHC	319-85-7	0.50	μg/kg		<0.50	<0.50	<0.50	
delta-BHC	319-86-8	0.50	μg/kg		<0.50	<0.50	<0.50	
4.4`-DDD	72-54-8	0.50	μg/kg		<0.50	<0.50	<0.50	
4.4`-DDE	72-55-9	0.50	μg/kg		<0.50	<0.50	<0.50	
4.4`-DDT	50-29-3	0.50	μg/kg		<0.50	<0.50	<0.50	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.50	μg/kg		<0.50	<0.50	<0.50	
	0-2							
Dieldrin	60-57-1	0.50	μg/kg		<0.50	<0.50	<0.50	
alpha-Endosulfan	959-98-8	0.50	μg/kg		<0.50	<0.50	<0.50	
beta-Endosulfan	33213-65-9	0.50	μg/kg		<0.50	<0.50	<0.50	
Endosulfan sulfate	1031-07-8	0.50	μg/kg		<0.50	<0.50	<0.50	
^ Endosulfan (sum)	115-29-7	0.50	μg/kg		<0.50	<0.50	<0.50	
Endrin	72-20-8	0.50	μg/kg		<0.50	<0.50	<0.50	
Endrin aldehyde	7421-93-4	0.50	μg/kg		<0.50	<0.50	<0.50	
Endrin ketone	53494-70-5	0.50	μg/kg		<0.50	<0.50	<0.50	
Heptachlor	76-44-8	0.50	μg/kg		<0.50	<0.50	<0.50	
Heptachlor epoxide	1024-57-3	0.50	μg/kg		<0.50	<0.50	<0.50	
Hexachlorobenzene (HCB)	118-74-1	0.50	μg/kg		<0.50	<0.50	<0.50	
gamma-BHC	58-89-9	0.25	μg/kg		<0.25	<0.25	<0.25	
Methoxychlor	72-43-5	0.50	μg/kg		<0.50	<0.50	<0.50	
cis-Chlordane	5103-71-9	0.50	μg/kg		<0.50	<0.50	<0.50	
trans-Chlordane	5103-74-2	0.50	μg/kg		<0.50	<0.50	<0.50	
^ Total Chlordane (sum)		0.50	μg/kg		<0.50	<0.50	<0.50	
Oxychlordane	27304-13-8	0.50	μg/kg		<0.50	<0.50	<0.50	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.50	μg/kg		<0.50	<0.50	<0.50	
EP132B: Polynuclear Aromatic H	lydrocarbons							
Naphthalene	91-20-3	5	μg/kg		<5	7	10	
2-Methylnaphthalene	91-57-6	5	μg/kg		<5	<5	<5	
Acenaphthylene	208-96-8	4	μg/kg		<4	9	11	
Acenaphthene	83-32-9	4	μg/kg		<4	8	<4	
Fluorene	86-73-7	4	μg/kg		<4	6	<4	
Phenanthrene	85-01-8	4	μg/kg		5	39	18	
Anthracene	120-12-7	4	μg/kg		<4	6	7	
Fluoranthene	206-44-0	4	μg/kg		10	116	62	
Pyrene	129-00-0	4	μg/kg		11	103	62	

: 19 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_18 (0-0.5)	OP2_42 / 0.0-0.5	OP2_42 / 0.5-1.0	OP2_42 / 1.0-1.5	
	Client sampling date / time				27-Sep-2018 00:00	27-Sep-2018 00:00	27-Sep-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1823888-019	EB1823888-020	EB1823888-021	EB1823888-022	
				Result	Result	Result	Result	
EP132B: Polynuclear Aromatic Hydr	ocarbons - Continued							
Benz(a)anthracene	56-55-3	4	μg/kg		7	72	44	
Chrysene	218-01-9	4	μg/kg		5	56	28	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	μg/kg		6	71	33	
Benzo(k)fluoranthene	207-08-9	4	μg/kg		<4	34	19	
Benzo(e)pyrene	192-97-2	4	μg/kg		4	40	20	
Benzo(a)pyrene	50-32-8	4	μg/kg		6	75	44	
Perylene	198-55-0	4	μg/kg		5	21	19	
Benzo(g.h.i)perylene	191-24-2	4	μg/kg		5	44	26	
Dibenz(a.h)anthracene	53-70-3	4	μg/kg		<4	10	<4	
Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg		4	40	22	
Coronene	191-07-1	5	μg/kg		<5	9	5	
^ Sum of PAHs		4	μg/kg		68	766	430	
EP080-SD: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%		76.5	87.3	87.1	
Toluene-D8	2037-26-5	0.2	%		69.3	80.4	78.0	
4-Bromofluorobenzene	460-00-4	0.2	%		78.4	85.9	86.5	
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	113	127	83.4	102	
EP131S: OC Pesticide Surrogate								
Dibromo-DDE	21655-73-2	0.50	%		75.9	62.7	50.7	
EP132T: Base/Neutral Extractable So	urrogates							
2-Fluorobiphenyl	321-60-8	10	%		81.9	80.8	119	
Anthracene-d10	1719-06-8	10	%		112	124	112	
4-Terphenyl-d14	1718-51-0	10	%		77.2	85.2	86.8	

: 20 of 20 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

301001.02018 - Port of Mackay Sediment Sampling Project

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080-SD: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	145
Toluene-D8	2037-26-5	42	144
4-Bromofluorobenzene	460-00-4	58	142
EP090S: Organotin Surrogate			
Tripropyltin		35	130
EP131S: OC Pesticide Surrogate			
Dibromo-DDE	21655-73-2	10	119
EP132T: Base/Neutral Extractable Surrogates			
2-Fluorobiphenyl	321-60-8	55	135
Anthracene-d10	1719-06-8	70	136
4-Terphenyl-d14	1718-51-0	57	127

QUALITY CONTROL REPORT

Work Order : **EB1823888** Page : 1 of 19

Amendment : 3

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia 4053

BRISBANE QLD, AUSTRALIA 4000

Telephone : ---- Telephone : +61 7 3552 8662

Project : 301001.02018 - Port of Mackay Sediment Sampling Date Samples Received : 03-Oct-2018
Order number : Date Analysis Commenced : 08-Oct-2018

C-O-C number ---- Issue Date 29-Nov-2018

Sampler : NICHOLAS BAINTON

Site

Quote number : BN/185/18

No. of samples received : 19
No. of samples analysed : 19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Andrew Epps	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Andrew Epps	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Sarah Ashworth	Laboratory Manager - Brisbane	Brisbane Organics, Stafford, QLD
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Satishkumar Trivedi	Senior Acid Sulfate Soil Chemist	Brisbane Inorganics, Stafford, QLD
Tom Maloney	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD

Page : 2 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG035T: Total Reco	overable Mercury by FIN	IS (Low Level) (QC Lot: 1968797)							
EB1823888-016	OP2_33 (0-0.5)	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	0.02	0.02	0.00	0% - 20%
EG035T: Total Reco	overable Mercury by FIN	IS (Low Level) (QC Lot: 1968837)							
EB1823888-004	OP2_44 (0-0.5)	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	0.01	0.01	0.00	0% - 20%
EB1823888-014	OP2_36 (0.5-1.0)	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	0.02	0.02	0.00	0% - 20%
EG035T: Total Reco	overable Mercury by FIN	IS (Low Level) (QC Lot: 2049807)							
EB1823888-020	OP2_42 / 0.0-0.5	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	0% - 20%
EA010: Conductivity	y (1:5) (QC Lot: 1968828								
EB1823888-019	OP2_18 (0-0.5)	EA010: Electrical Conductivity @ 25°C		1	μS/cm	4110	4110	0.00	0% - 20%
EB1823844-001	Anonymous	EA010: Electrical Conductivity @ 25°C		1	μS/cm	115	130	11.8	0% - 20%
EA033-A: Actual Ac	idity (QC Lot: 2004237)								
EB1823888-009	OP2_32 (0-0.5)	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.00	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	0.00	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	9.0	9.1	1.10	0% - 20%
EA033-B: Potential	Acidity (QC Lot: 200423	7)							
EB1823888-009	OP2_32 (0-0.5)	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.204	0.202	0.985	0% - 20%
		EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	127	126	1.17	0% - 50%
EA033-C: Acid Neut	ralising Capacity (QC L	ot: 2004237)							
EB1823888-009	OP2_32 (0-0.5)	EA033: Acid Neutralising Capacity (19A2)		0.01	% CaCO3	5.65	5.61	0.728	0% - 20%
		EA033: sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	1.81	1.80	0.720	0% - 20%
		(s-19A2)							
		EA033: acidity - Acid Neutralising Capacity		10	mole H+ / t	1130	1120	0.717	0% - 20%
		(a-19A2)							
EA037: Ass Field S	creening Analysis (QC	Lot: 1971291)							

Page : 3 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	<u> </u>	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA037: Ass Field	Screening Analysis (QC	Lot: 1971291) - continued							
EB1823534-016	Anonymous	EA037: pH (F)		0.1	pH Unit	8.2	8.1	1.23	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	5.7	5.6	1.77	0% - 20%
EB1823534-026	Anonymous	EA037: pH (F)		0.1	pH Unit	7.9	7.8	1.27	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	8.8	8.8	0.00	0% - 20%
EA055: Moisture C	ontent (Dried @ 105-110°								
EB1823888-016	OP2 33 (0-0.5)	EA055: Moisture Content		0.1	%	38.1	38.5	0.985	0% - 20%
EA055: Moisture C	ontent (Dried @ 105-110°								
EB1823844-001	Anonymous	EA055: Moisture Content		0.1	%	20.5	20.7	0.942	0% - 20%
EB1823888-008	OP2-45 (1.0-1.5)	EA055: Moisture Content		0.1	%	48.1	48.2	0.00	0% - 20%
	,			0.1	70	40.1	40.2	0.00	070 - 2070
	ontent (Dried @ 105-110°			0.4	0/	00.0	00.0	0.00	00/ 000/
EB1823888-020	OP2_42 / 0.0-0.5	EA055: Moisture Content		0.1	%	28.2	29.0	2.86	0% - 20%
	by Discrete Analyser (Q	C Lot: 2019038)							
EB1823888-009	OP2_32 (0-0.5)	ED045G: Chloride	16887-00-6	10	mg/kg	10800	10500	2.28	0% - 20%
G020-SD: Total M	etals in Sediments by IC	PMS (QC Lot: 1968796)							
EB1823888-016	OP2_33 (0-0.5)	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	6.72	6.77	0.694	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	18.6	18.9	1.36	0% - 50%
		EG020-SD: Copper	7440-50-8	1	mg/kg	23.1	24.4	5.54	0% - 20%
		EG020-SD: Lead	7439-92-1	1	mg/kg	11.4	9.8	15.6	0% - 50%
		EG020-SD: Nickel	7440-02-0	1	mg/kg	10.5	11.0	4.77	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	47.2	47.6	0.969	0% - 20%
G020-SD: Total M	etals in Sediments by IC	PMS (QC Lot: 1968836)							
EB1823888-004	OP2_44 (0-0.5)	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	4.88	4.93	1.10	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	14.4	13.5	6.53	0% - 50%
		EG020-SD: Copper	7440-50-8	1	mg/kg	11.7	11.2	4.57	0% - 50%
		EG020-SD: Lead	7439-92-1	1	mg/kg	16.1	# 8.4	62.5	0% - 50%
		EG020-SD: Nickel	7440-02-0	1	mg/kg	9.1	7.7	17.0	No Limit
		EG020-SD: Zinc	7440-66-6	1	mg/kg	38.8	# 61.6	45.5	0% - 20%
EB1823888-014	OP2_36 (0.5-1.0)	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	7.44	7.20	3.26	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	22.2	21.5	3.12	0% - 20%
		EG020-SD: Copper	7440-50-8	1	mg/kg	19.1	19.4	1.71	0% - 50%
		EG020-SD: Lead	7439-92-1	1	mg/kg	12.7	13.4	5.01	0% - 50%
		EG020-SD: Nickel	7440-02-0	1	mg/kg	12.7	12.4	2.18	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	53.5	# 66.9	22.3	0% - 20%
G020-SD: Total M	etals in Sediments by IC								
EB1823888-020	OP2 42 / 0.0-0.5	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Caumum	7440-38-2	1	mg/kg	3.65	4.01	9.27	No Limit

Page : 4 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020-SD: Total M	etals in Sediments by IC	PMS (QC Lot: 2049806) - continued							
EB1823888-020	OP2_42 / 0.0-0.5	EG020-SD: Chromium	7440-47-3	1	mg/kg	10.2	10.2	0.00	0% - 50%
		EG020-SD: Copper	7440-50-8	1	mg/kg	8.2	8.8	ult RPD (%) R	No Limit
		EG020-SD: Lead	7439-92-1	1	mg/kg	6.3	6.4	2.16	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	6.2	6.3	0.00	No Limit
		EG020-SD: Zinc	7440-66-6	1	mg/kg	21.7	25.6	16.5	0% - 20%
EP003: Total Organ	nic Carbon (TOC) in Soil	(QC Lot: 1985740)							
EB1823888-004	OP2_44 (0-0.5)	EP003: Total Organic Carbon		0.02	%	0.43	0.44	0.00	0% - 20%
EB1823888-014	OP2_36 (0.5-1.0)	EP003: Total Organic Carbon		0.02	%	0.36	0.39	8.70	0% - 50%
EP003: Total Organ	nic Carbon (TOC) in Soil	(QC Lot: 2056778)							
EB1823888-020	OP2_42 / 0.0-0.5	EP003: Total Organic Carbon		0.02	%	0.24	0.24	0.00	0% - 50%
EP004: Organic Ma	atter (QC Lot: 1968422)								
EB1823888-009	OP2 32 (0-0.5)	EP004: Organic Matter		0.5	%	1.6	1.5	0.00	No Limit
	,	rocarbons (QC Lot: 1968790)							
EB1823888-016	OP2 33 (0-0.5)	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	No Limit
	,			<u> </u>	ilig/kg		45	0.00	NO LITTIE
		rocarbons (QC Lot: 1968804)		2		-72	40	0.00	NI= 1 ::4
EB1823888-016	OP2_33 (0-0.5)	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3 5	<3		No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	11	<3 <3		No Limit
		EP071-SD: C10 - C36 Fraction (sum)		5	mg/kg	6	<5		No Limit No Limit
	00 = (10 (1 11 11	EP071-SD: C29 - C36 Fraction		5	mg/kg	О	<0	24.4	INO LIMIL
		rocarbons (QC Lot: 2049809)				_	_		
EB1823888-020	OP2_42 / 0.0-0.5	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3		No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	4	4		No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	4	4		No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD / EP071-		rocarbons (QC Lot: 2049811)							
EB1823888-020	OP2_42 / 0.0-0.5	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	No Limit
EP080-SD / EP071-	SD: Total Recoverable H	ydrocarbons (QC Lot: 1968790)							
EB1823888-016	OP2_33 (0-0.5)	EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	0.00	No Limit
EP080-SD / EP071-	SD: Total Recoverable H	ydrocarbons (QC Lot: 1968804)							
EB1823888-016	OP2_33 (0-0.5)	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	10	3	97.8	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	10	3	108	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD / EP071-	SD: Total Recoverable H	ydrocarbons (QC Lot: 2049809)							
EB1823888-020	OP2 42 / 0.0-0.5	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
	_	EP071-SD: >C16 - C34 Fraction		3	mg/kg	6	6	0.00	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	6	6	0.00	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit

Page : 5 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080-SD / EP071-	SD: Total Recoverable H	ydrocarbons (QC Lot: 2049811)							
EB1823888-020	OP2_42 / 0.0-0.5	EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	0.00	No Limit
EP080-SD: BTEXN	(QC Lot: 1968790)								
EB1823888-016	OP2_33 (0-0.5)	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
l		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
			106-42-3						
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Total Xylenes		0.2	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP080-SD: BTEXN	(QC Lot: 2049811)								
EB1823888-020	OP2_42 / 0.0-0.5	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
			106-42-3						
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080-SD: Total Xylenes		0.2	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP090: Organotin (Compounds (QC Lot: 19	68803)							
EB1823888-016	OP2_33 (0-0.5)	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	<0.5	0.00	No Limit
		EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	<1	0.00	No Limit
EP090: Organotin (Compounds (QC Lot: 19	68838)							
EB1823888-004	OP2_44 (0-0.5)	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	3.6	1.9	59.0	No Limit
		EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	1	1	0.00	No Limit
EB1823888-014	OP2_36 (0.5-1.0)	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	3.4	3.6	6.13	No Limit
		EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	2	2	0.00	No Limit
EP090: Organotin (Compounds (QC Lot: 20	49812)							
EB1823888-020	OP2_42 / 0.0-0.5	EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	6.0	3.9	42.3	0% - 50%
		EP090: MonobutyItin	78763-54-9	1	μgSn/kg	<1	<1	0.00	No Limit
		EP090: Dibutyltin	1002-53-5	1	μgSn/kg	1	1	0.00	No Limit
EP131A: Organoch	lorine Pesticides (QC Lo	·							
EB1823888-016	OP2_33 (0-0.5)	EP131A: gamma-BHC	58-89-9	0.25	μg/kg	<0.25	<0.25	0.00	No Limit
		EP131A: cis-Chlordane	5103-71-9	0.25	μg/kg	<0.50	<0.50	0.00	No Limit
I		EP131A: trans-Chlordane	5103-74-2	0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Total Chlordane (sum)		0.25	μg/kg	<0.50	<0.50	0.00	No Limit

Page : 6 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP131A: Organochi	orine Pesticides (QC Lo	ot: 1972855) - continued							
EB1823888-016	OP2_33 (0-0.5)	EP131A: Aldrin	309-00-2	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: alpha-BHC	319-84-6	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: beta-BHC	319-85-7	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: delta-BHC	319-86-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDD	72-54-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDE	72-55-9	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDT	50-29-3	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Sum of DDD + DDE + DDT	72-54-8/72-55- 9/50-2	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Dieldrin	60-57-1	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: alpha-Endosulfan	959-98-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: beta-Endosulfan	33213-65-9	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endosulfan sulfate	1031-07-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endosulfan (sum)	115-29-7	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endrin	72-20-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endrin aldehyde	7421-93-4	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endrin ketone	53494-70-5	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Heptachlor	76-44-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Heptachlor epoxide	1024-57-3	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Methoxychlor	72-43-5	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
EP131A: Organochl	orine Pesticides (QC Lo	ot: 2050937)							
EB1823888-020	OP2_42 / 0.0-0.5	EP131A: gamma-BHC	58-89-9	0.25	μg/kg	<0.25	<0.25	0.00	No Limit
		EP131A: cis-Chlordane	5103-71-9	0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: trans-Chlordane	5103-74-2	0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Total Chlordane (sum)		0.25	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Aldrin	309-00-2	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: alpha-BHC	319-84-6	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: beta-BHC	319-85-7	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: delta-BHC	319-86-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDD	72-54-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDE	72-55-9	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: 4.4`-DDT	50-29-3	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Sum of DDD + DDE + DDT	72-54-8/72-55- 9/50-2	0.5	µg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Dieldrin	60-57-1	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: alpha-Endosulfan	959-98-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: beta-Endosulfan	33213-65-9	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endosulfan sulfate	1031-07-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endosulfan (sum)	115-29-7	0.5	μg/kg	<0.50	<0.50	0.00	No Limit

Page : 7 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP131A: Organochl	orine Pesticides (QC Lo	ot: 2050937) - continued							
EB1823888-020	OP2_42 / 0.0-0.5	EP131A: Endrin	72-20-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endrin aldehyde	7421-93-4	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Endrin ketone	53494-70-5	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Heptachlor	76-44-8	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Heptachlor epoxide	1024-57-3	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
		EP131A: Methoxychlor	72-43-5	0.5	μg/kg	<0.50	<0.50	0.00	No Limit
EP132B: Polynuclea	ar Aromatic Hydrocarbo	ons (QC Lot: 1972856)							
EB1823888-016	OP2_33 (0-0.5)	EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	12	13	0.00	No Limit
		EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	37	50	29.5	0% - 50%
		EP132B-SD: Pyrene	129-00-0	4	μg/kg	38	45	17.2	0% - 50%
		EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	25	32	25.2	No Limit
		EP132B-SD: Chrysene	218-01-9	4	μg/kg	22	25	10.1	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	26	29	11.7	No Limit
			205-82-3						
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	15	21	31.9	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	15	18	13.4	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	26	30	13.4	No Limit
		EP132B-SD: Perylene	198-55-0	4	μg/kg	9	10	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	16	19	14.9	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	4	4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	15	17	14.0	No Limit
		EP132B-SD: Sum of PAHs		4	μg/kg	260	313	18.5	0% - 20%
		EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	μg/kg	<5	<5	0.00	No Limit
EP132B: Polynuclea	ar Aromatic Hydrocarbo	ons (QC Lot: 2050948)							
EB1823888-020	OP2_42 / 0.0-0.5	EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	5	<4	26.7	No Limit
		EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	10	9	11.6	No Limit
		EP132B-SD: Pyrene	129-00-0	4	μg/kg	11	9	11.9	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	7	7	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	μg/kg	5	6	21.2	No Limit

Page : 8 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP132B: Polynuclea	ar Aromatic Hydrocarboi	ns (QC Lot: 2050948) - continued							
EB1823888-020	OP2_42 / 0.0-0.5	EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	6	10	41.1	No Limit
			205-82-3						
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	4	5	29.7	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	6	8	21.8	No Limit
		EP132B-SD: Perylene	198-55-0	4	μg/kg	5	4	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	5	6	20.3	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	4	5	27.4	No Limit
		EP132B-SD: Sum of PAHs		4	μg/kg	68	69	1.46	0% - 50%
		EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	μg/kg	<5	<5	0.00	No Limit

Page : 9 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	6) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG035T: Total Recoverable Mercury by FIMS (Low Level) (0	QCLot: 196879	97)						
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	0.0555 mg/kg	98.5	70	130
EG035T: Total Recoverable Mercury by FIMS (Low Level) (0	QCLot: 196883	37)						
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	0.0555 mg/kg	94.6	70	130
EG035T: Total Recoverable Mercury by FIMS (Low Level) (0	QCLot: 204980	07)						
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	0.0555 mg/kg	97.3	70	130
EA010: Conductivity (1:5) (QCLot: 1968828)								
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	99.8	97	103
EA033-A: Actual Acidity (QCLot: 2004237)								
EA033: pH KCI (23A)			pH Unit		4.6 pH Unit	95.6	70	130
EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	17.7 mole H+ / t	108	70	130
EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02				
EA033-B: Potential Acidity (QCLot: 2004237)								
EA033: Chromium Reducible Sulfur (22B)		0.005	% S	<0.005	0.25483 % S	90.2	70	130
EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10				
EA033-C: Acid Neutralising Capacity (QCLot: 2004237)								
EA033: Acid Neutralising Capacity (19A2)		0.01	% CaCO3	<0.01	10 % CaCO3	104	70	130
EA033: acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	<10				
EA033: sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	<0.01				
ED045G: Chloride by Discrete Analyser (QCLot: 2019038)								
ED045G: Chloride	16887-00-6	10	mg/kg	<10	50 mg/kg	104	83	119
				<10	5000 mg/kg	105	83	119
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 196	88796)							
EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	116 mg/kg	104	80	124
EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	0.8 mg/kg	102	87	122
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	20.5 mg/kg	99.6	79	129
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	52.9 mg/kg	97.1	85	118
EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	66.3 mg/kg	97.0	86	119
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	14.7 mg/kg	101	77	123
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	183 mg/kg	71.7	71	127
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 196	8836)							
EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	116 mg/kg	110	80	124
EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	0.8 mg/kg	104	87	122
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	20.5 mg/kg	114	79	129

Page : 10 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 196	8836) <i>-</i> conti	nued							
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	52.9 mg/kg	104	85	118	
EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	66.3 mg/kg	100	86	119	
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	14.7 mg/kg	110	77	123	
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	183 mg/kg	73.5	71	127	
EG020-SD: Total Metals in Sediments by ICPMS (QCLot: 204	9806)								
EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	116 mg/kg	98.6	80	124	
EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	0.8 mg/kg	101	87	122	
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	20.5 mg/kg	105	79	129	
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	52.9 mg/kg	100	85	118	
EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	66.3 mg/kg	116	86	119	
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	14.7 mg/kg	99.1	77	123	
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	112 mg/kg	118	71	127	
EP003: Total Organic Carbon (TOC) in Soil (QCLot: 1985740)									
EP003: Total Organic Carbon		0.02	%	<0.02	17.6 %	100	70	130	
EP003: Total Organic Carbon (TOC) in Soil (QCLot: 2056778)									
EP003: Total Organic Carbon		0.02	%	<0.02	0.44 %	100	70	130	
EP004: Organic Matter (QCLot: 1968422)									
EP004: Organic Matter		0.5	%	<0.5	80 %	100	83	115	
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLo	ot: 1968790)								
EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	16 mg/kg	98.4	66	120	
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLc	st: 1969904)								
EP071-SD: C10 - C14 Fraction	Jt. 1900004) 	3	mg/kg	<3	157 mg/kg	95.4	43	126	
EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	245 mg/kg	108	66	140	
EP071-SD: C29 - C36 Fraction		5	mg/kg	<5					
EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3					
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLc	of: 20/19809)								
EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	157 mg/kg	107	43	126	
EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	245 mg/kg	108	66	140	
EP071-SD: C13 - C26 Fraction		5	mg/kg	<5					
EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3					
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QCLc	ot: 2049844)							1	
EP080-SD: C6 - C9 Fraction	JL. 2049611) 	3	mg/kg	<3	16 mg/kg	75.8	66	120	
						. 5.5		.20	
EP080-SD / EP071-SD: Total Recoverable Hydrocarbons (QC EP080-SD: C6 - C10 Fraction	C6 C10	3	mg/kg	<3	18.5 mg/kg	98.3	66	119	
	_		1119/119	,,,	10.0 1119/119	50.0		110	
EP080-SD / EP071-SD: Total Recoverable Hydrocarbons (QC		3	ma ⁿ ta		227 ma/ka	100.0	40	124	
EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3 <3	227 mg/kg	100.0 110	40 66	134 136	
EP071-SD: >C16 - C34 Fraction		J	mg/kg	\3	162 mg/kg	110	00	130	

Page : 11 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080-SD / EP071-SD: Total Recoverable Hydrocark	ons (QCLot: 1968804)	- continued						
EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5				
EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3				
EP080-SD / EP071-SD: Total Recoverable Hydrocart	ons (QCLot: 2049809)							
EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	227 mg/kg	106	40	134
EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	162 mg/kg	112	66	136
EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5				
EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3				
EP080-SD / EP071-SD: Total Recoverable Hydrocarb	ons (QCLot: 2049811)							
EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	18.5 mg/kg	73.2	66	119
EP080-SD: BTEXN (QCLot: 1968790)								
EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	95.0	73	105
EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	1 mg/kg	100	73	105
EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	1 mg/kg	99.6	67	104
EP080-SD: meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.2	2 mg/kg	94.6	66	106
EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	1 mg/kg	101	68	105
EP080-SD: Total Xylenes		0.2	mg/kg	<0.2				
EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2				
EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	1 mg/kg	95.6	72	115
EP080-SD: BTEXN (QCLot: 2049811)								
EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	81.1	73	105
EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	1 mg/kg	77.7	73	105
EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	1 mg/kg	76.2	67	104
EP080-SD: meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.2	2 mg/kg	77.0	66	106
EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	1 mg/kg	77.7	68	105
EP080-SD: Total Xylenes		0.2	mg/kg	<0.2				
EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2				
EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	1 mg/kg	80.1	72	115
EP090: Organotin Compounds (QCLot: 1968803)								
EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	1.25 µgSn/kg	110	36	128
EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	1.25 μgSn/kg	92.5	42	132
EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	1.25 μgSn/kg	71.3	52	139
EP090: Organotin Compounds (QCLot: 1968838)								
EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	1.25 µgSn/kg	125	36	128
EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	1.25 µgSn/kg	125	42	132
EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	1.25 μgSn/kg	103	52	139
EP090: Organotin Compounds (QCLot: 2049812)			·		·			

Page : 12 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP090: Organotin Compounds (QCLot: 204981	2) - continued							
EP090: Monobutyltin	78763-54-9	1	μgSn/kg	<1	1.25 μgSn/kg	# 156	36	128
EP090: Dibutyltin	1002-53-5	1	μgSn/kg	<1	1.25 μgSn/kg	127	42	132
EP090: Tributyltin	56573-85-4	0.5	μgSn/kg	<0.5	1.25 μgSn/kg	112	52	139
EP131A: Organochlorine Pesticides (QCLot: 19	972855)							
EP131A: Aldrin	309-00-2	0.5	μg/kg	<0.50	5 μg/kg	77.9	38	139
EP131A: alpha-BHC	319-84-6	0.5	μg/kg	<0.50	5 μg/kg	91.9	18	136
EP131A: beta-BHC	319-85-7	0.5	μg/kg	<0.50	5 μg/kg	85.0	31	131
EP131A: delta-BHC	319-86-8	0.5	μg/kg	<0.50	5 μg/kg	119	37	140
EP131A: 4.4`-DDD	72-54-8	0.5	μg/kg	<0.50	5 μg/kg	54.1	26	141
EP131A: 4.4`-DDE	72-55-9	0.5	μg/kg	<0.50	5 μg/kg	66.7	35	129
EP131A: 4.4`-DDT	50-29-3	0.5	μg/kg	<0.50	5 μg/kg	94.7	23	138
EP131A: Sum of DDD + DDE + DDT	72-54-8/72-5 5-9/50-2	0.5	μg/kg	<0.50				
EP131A: Dieldrin	60-57-1	0.5	μg/kg	<0.50	5 μg/kg	107	30	140
EP131A: alpha-Endosulfan	959-98-8	0.5	μg/kg	<0.50	5 μg/kg	81.4	38	140
EP131A: beta-Endosulfan	33213-65-9	0.5	μg/kg	<0.50	5 μg/kg	92.4	32	152
EP131A: Endosulfan sulfate	1031-07-8	0.5	μg/kg	<0.50	5 μg/kg	125	36	155
EP131A: Endosulfan (sum)	115-29-7	0.5	μg/kg	<0.50				
EP131A: Endrin	72-20-8	0.5	μg/kg	<0.50	5 μg/kg	142	26	158
EP131A: Endrin aldehyde	7421-93-4	0.5	μg/kg	<0.50	5 μg/kg	94.2	20	118
EP131A: Endrin ketone	53494-70-5	0.5	μg/kg	<0.50	5 μg/kg	81.9	13	135
EP131A: Heptachlor	76-44-8	0.5	μg/kg	<0.50	5 μg/kg	114	39	155
EP131A: Heptachlor epoxide	1024-57-3	0.5	μg/kg	<0.50	5 μg/kg	78.2	34	148
EP131A: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/kg	<0.50	5 μg/kg	49.4	26	152
EP131A: gamma-BHC	58-89-9	0.25	μg/kg	<0.25	5 μg/kg	67.0	31	137
EP131A: Methoxychlor	72-43-5	0.5	μg/kg	<0.50	5 μg/kg	148	36	152
EP131A: cis-Chlordane	5103-71-9	0.25	μg/kg	<0.25	5 μg/kg	52.9	36	142
EP131A: trans-Chlordane	5103-74-2	0.25	μg/kg	<0.25	5 μg/kg	74.0	30	138
EP131A: Total Chlordane (sum)		0.25	μg/kg	<0.25				
EP131A: Organochlorine Pesticides (QCLot: 20	050937)							
EP131A: Aldrin	309-00-2	0.5	μg/kg	<0.50	5 μg/kg	50.8	38	139
EP131A: alpha-BHC	319-84-6	0.5	μg/kg	<0.50	5 μg/kg	50.2	18	136
EP131A: beta-BHC	319-85-7	0.5	μg/kg	<0.50	5 μg/kg	56.6	31	131
EP131A: delta-BHC	319-86-8	0.5	μg/kg	<0.50	5 μg/kg	56.2	37	140
EP131A: 4.4`-DDD	72-54-8	0.5	μg/kg	<0.50	5 μg/kg	29.8	26	141
EP131A: 4.4`-DDE	72-55-9	0.5	μg/kg	<0.50	5 μg/kg	41.2	35	129
EP131A: 4.4`-DDT	50-29-3	0.5	μg/kg	<0.50	5 μg/kg	67.3	23	138
EP131A: Sum of DDD + DDE + DDT	72-54-8/72-5 5-9/50-2	0.5	μg/kg	<0.50				

Page : 13 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound CAS Nur	nber LOR	Unit	Result	Concentration	LCS	Low	High	
EP131A: Organochlorine Pesticides (QCLot: 2050937) - continued								
EP131A: Dieldrin 60-5	7-1 0.5	μg/kg	<0.50	5 μg/kg	52.3	30	140	
EP131A: alpha-Endosulfan 959-9	3-8 0.5	μg/kg	<0.50	5 μg/kg	52.6	38	140	
EP131A: beta-Endosulfan 33213-6	5-9 0.5	μg/kg	<0.50	5 μg/kg	53.4	32	152	
EP131A: Endosulfan sulfate 1031-0	7-8 0.5	μg/kg	<0.50	5 μg/kg	64.6	36	155	
EP131A: Endosulfan (sum) 115-2	9-7 0.5	μg/kg	<0.50					
EP131A: Endrin 72-2	0.5	μg/kg	<0.50	5 μg/kg	68.0	26	158	
EP131A: Endrin aldehyde 7421-9	3-4 0.5	μg/kg	<0.50	5 μg/kg	60.7	20	118	
EP131A: Endrin ketone 53494-7	0.5	μg/kg	<0.50	5 μg/kg	51.7	13	135	
EP131A: Heptachlor 76-4	4-8 0.5	μg/kg	<0.50	5 μg/kg	60.1	39	155	
EP131A: Heptachlor epoxide 1024-5	7-3 0.5	μg/kg	<0.50	5 μg/kg	54.7	34	148	
EP131A: Hexachlorobenzene (HCB) 118-7	4-1 0.5	μg/kg	<0.50	5 μg/kg	33.5	26	152	
EP131A: gamma-BHC 58-8	9-9 0.25	μg/kg	<0.25	5 μg/kg	47.2	31	137	
EP131A: Methoxychlor 72-4	3-5 0.5	μg/kg	<0.50	5 μg/kg	88.6	36	152	
EP131A: cis-Chlordane 5103-7	1-9 0.25	μg/kg	<0.25	5 μg/kg	38.5	36	142	
EP131A: trans-Chlordane 5103-7	1-2 0.25	μg/kg	<0.25	5 μg/kg	44.5	30	138	
EP131A: Total Chlordane (sum)	0.25	μg/kg	<0.25					
EP132B: Polynuclear Aromatic Hydrocarbons (QCLot: 1972856)								
EP132B-SD: Naphthalene 91-2)-3 5	μg/kg	<5	25 μg/kg	97.0	63	129	
EP132B-SD: 2-Methylnaphthalene 91-5	7-6 5	μg/kg	<5	25 μg/kg	121	64	128	
EP132B-SD: Acenaphthylene 208-9	6-8 4	μg/kg	<4	25 μg/kg	94.7	65	129	
EP132B-SD: Acenaphthene 83-3	2-9 4	μg/kg	<4	25 μg/kg	92.5	68	132	
EP132B-SD: Fluorene 86-7	3-7 4	μg/kg	<4	25 μg/kg	92.7	68	124	
EP132B-SD: Phenanthrene 85-0	1-8 4	μg/kg	<4	25 μg/kg	89.7	64	134	
EP132B-SD: Anthracene 120-1	2-7 4	μg/kg	<4	25 μg/kg	91.4	65	131	
EP132B-SD: Fluoranthene 206-4	4-0 4	μg/kg	<4	25 μg/kg	89.8	64	130	
EP132B-SD: Pyrene 129-0	0-0 4	μg/kg	<4	25 μg/kg	88.7	67	133	
EP132B-SD: Benz(a)anthracene 56-5	5-3 4	μg/kg	<4	25 μg/kg	96.6	62	130	
EP132B-SD: Chrysene 218-0	1-9 4	μg/kg	<4	25 μg/kg	88.6	65	133	
EP132B-SD: Benzo(b+j)fluoranthene 205-9	9-2 4	μg/kg	<4	25 μg/kg	90.7	68	120	
205-8	2-3							
EP132B-SD: Benzo(k)fluoranthene 207-0	3-9 4	μg/kg	<4	25 μg/kg	87.3	61	133	
EP132B-SD: Benzo(e)pyrene 192-9	7-2 4	μg/kg	<4	25 μg/kg	86.6	63	127	
EP132B-SD: Benzo(a)pyrene 50-3	2-8 4	μg/kg	<4	25 μg/kg	90.7	66	118	
EP132B-SD: Perylene 198-5	5-0 4	μg/kg	<4	25 μg/kg	89.0	69	119	
EP132B-SD: Benzo(g.h.i)perylene 191-2	4-2 4	μg/kg	<4	25 μg/kg	93.2	66	120	
EP132B-SD: Dibenz(a.h)anthracene 53-7	0-3 4	μg/kg	<4	25 μg/kg	91.8	64	122	
EP132B-SD: Indeno(1.2.3.cd)pyrene 193-3	9-5 4	μg/kg	<4	25 μg/kg	92.9	64	120	
EP132B-SD: Coronene 191-0	7-1 5	μg/kg	<5	25 μg/kg	94.8	68	136	
EP132B-SD: Sum of PAHs	4	μg/kg	<4					

Page : 14 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP132B: Polynuclear Aromatic Hydrocarbons (Q	CLot: 2050948)							
EP132B-SD: Naphthalene	91-20-3	5	μg/kg	<5	25 μg/kg	83.8	63	129
EP132B-SD: 2-Methylnaphthalene	91-57-6	5	μg/kg	<5	25 μg/kg	97.1	64	128
EP132B-SD: Acenaphthylene	208-96-8	4	μg/kg	<4	25 μg/kg	100	65	129
EP132B-SD: Acenaphthene	83-32-9	4	μg/kg	<4	25 μg/kg	97.4	68	132
EP132B-SD: Fluorene	86-73-7	4	μg/kg	<4	25 μg/kg	98.9	68	124
EP132B-SD: Phenanthrene	85-01-8	4	μg/kg	<4	25 μg/kg	104	64	134
EP132B-SD: Anthracene	120-12-7	4	μg/kg	<4	25 μg/kg	92.3	65	131
EP132B-SD: Fluoranthene	206-44-0	4	μg/kg	<4	25 μg/kg	98.6	64	130
EP132B-SD: Pyrene	129-00-0	4	μg/kg	<4	25 μg/kg	98.9	67	133
EP132B-SD: Benz(a)anthracene	56-55-3	4	μg/kg	<4	25 μg/kg	100	62	130
EP132B-SD: Chrysene	218-01-9	4	μg/kg	<4	25 μg/kg	101	65	133
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	μg/kg	<4	25 μg/kg	104	68	120
	205-82-3							
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	μg/kg	<4	25 μg/kg	100.0	61	133
EP132B-SD: Benzo(e)pyrene	192-97-2	4	μg/kg	<4	25 μg/kg	107	63	127
EP132B-SD: Benzo(a)pyrene	50-32-8	4	μg/kg	<4	25 μg/kg	109	66	118
EP132B-SD: Perylene	198-55-0	4	μg/kg	<4	25 μg/kg	103	69	119
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	μg/kg	<4	25 μg/kg	102	66	120
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	μg/kg	<4	25 μg/kg	94.6	64	122
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg	<4	25 μg/kg	97.6	64	120
EP132B-SD: Coronene	191-07-1	5	μg/kg	<5	25 μg/kg	89.4	68	136
EP132B-SD: Sum of PAHs		4	μg/kg	<4				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ма	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Lin	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG035T: Total Rec	overable Mercury by FIMS (Low Level) (QCLot: 1968797	7)					
EB1823888-017	D7	EG035T-LL: Mercury	7439-97-6	0.5 mg/kg	83.2	70	130
EG035T: Total Rec	overable Mercury by FIMS (Low Level) (QCLot: 1968837	7)					
EB1823888-005	OP2_44 (0.5-1.0)	EG035T-LL: Mercury	7439-97-6	0.5 mg/kg	90.8	70	130
EG035T: Total Rec	overable Mercury by FIMS (Low Level) (QCLot: 2049807	7)					
EB1823888-021	OP2_42 / 0.5-1.0	EG035T-LL: Mercury	7439-97-6	0.5 mg/kg	92.6	70	130
EG020-SD: Total M	etals in Sediments by ICPMS (QCLot: 1968796)						
EB1823888-017	D7	EG020-SD: Arsenic	7440-38-2	50 mg/kg	94.6	70	130

Page : 15 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

ub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G020-SD: Total N	etals in Sediments by ICPMS (QCLot: 1968796) - conti	nued					
B1823888-017	D7	EG020-SD: Cadmium	7440-43-9	25 mg/kg	91.8	70	130
		EG020-SD: Chromium	7440-47-3	50 mg/kg	109	70	130
		EG020-SD: Copper	7440-50-8	50 mg/kg	96.4	70	130
		EG020-SD: Lead	7439-92-1	50 mg/kg	98.7	70	130
		EG020-SD: Nickel	7440-02-0	50 mg/kg	96.4	70	130
		EG020-SD: Zinc	7440-66-6	50 mg/kg	87.0	70	130
G020-SD: Total N	letals in Sediments by ICPMS (QCLot: 1968836)						
B1823888-005	OP2_44 (0.5-1.0)	EG020-SD: Arsenic	7440-38-2	50 mg/kg	104	70	130
		EG020-SD: Cadmium	7440-43-9	25 mg/kg	97.5	70	130
		EG020-SD: Chromium	7440-47-3	50 mg/kg	118	70	130
		EG020-SD: Copper	7440-50-8	50 mg/kg	105	70	130
		EG020-SD: Lead	7439-92-1	50 mg/kg	110	70	130
		EG020-SD: Nickel	7440-02-0	50 mg/kg	104	70	130
		EG020-SD: Zinc	7440-66-6	50 mg/kg	127	70	130
G020-SD: Total N	etals in Sediments by ICPMS (QCLot: 2049806)						
B1823888-021	OP2_42 / 0.5-1.0	EG020-SD: Arsenic	7440-38-2	50 mg/kg	94.2	70	130
		EG020-SD: Cadmium	7440-43-9	25 mg/kg	96.8	70	130
		EG020-SD: Chromium	7440-47-3	50 mg/kg	105	70	130
		EG020-SD: Copper	7440-50-8	50 mg/kg	102	70	130
		EG020-SD: Lead	7439-92-1	50 mg/kg	128	70	130
		EG020-SD: Nickel	7440-02-0	50 mg/kg	103	70	130
		EG020-SD: Zinc	7440-66-6	50 mg/kg	85.5	70	130
P004: Organic Ma	atter (QCLot: 1968422)						
B1823888-013	OP2_36 (0-0.5)	EP004: Organic Matter		2 %	78.5	70	130
P080-SD / EP071-	SD: Total Petroleum Hydrocarbons (QCLot: 1968790)						
B1823888-017	D7	EP080-SD: C6 - C9 Fraction		8 mg/kg	71.5	70	130
P080-SD / EP071-	SD: Total Petroleum Hydrocarbons (QCLot: 1968804)						
B1823888-017	D7	EP071-SD: C10 - C14 Fraction		157 mg/kg	94.7	70	130
-2.02000 0		EP071-SD: C15 - C28 Fraction		245 mg/kg	102	70	130
P080-SD / FP071.	SD: Total Petroleum Hydrocarbons (QCLot: 2049809)	El 671 GE. 616 GE611dadoll		3, 3			
B1823888-021		ED074 OD 040 044 Evertion		157 mg/kg	100	70	130
.D 1023000-U21	OP2_42 / 0.5-1.0	EP071-SD: C10 - C14 Fraction		157 mg/kg 245 mg/kg	106	70	130
		EP071-SD: C15 - C28 Fraction		Z43 mg/kg	100	10	130
	SD: Total Petroleum Hydrocarbons (QCLot: 2049811)						
B1823888-021	OP2_42 / 0.5-1.0	EP080-SD: C6 - C9 Fraction		8 mg/kg	82.0	70	130
P080-SD / EP071	SD: Total Recoverable Hydrocarbons (QCLot: 1968790						
EB1823888-017	D7	EP080-SD: C6 - C10 Fraction	C6 C10	8 mg/kg	72.4	70	130

Page : 16 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report	x Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
P080-SD / EP071	-SD: Total Recoverable Hydrocarbons (C	CLot: 1968804)							
EB1823888-017	D7	EP071-SD: >C10 - C16 Fraction		227 mg/kg	97.2	70	130		
		EP071-SD: >C16 - C34 Fraction		162 mg/kg	104	70	130		
P080-SD / EP071	I-SD: Total Recoverable Hydrocarbons(C	CLot: 2049809)							
B1823888-021	OP2_42 / 0.5-1.0	EP071-SD: >C10 - C16 Fraction		227 mg/kg	101	70	130		
		EP071-SD: >C16 - C34 Fraction		162 mg/kg	112	70	130		
P080-SD / EP071		CLot: 2049811)							
EB1823888-021	OP2 42 / 0.5-1.0	EP080-SD: C6 - C10 Fraction	C6 C10	8 mg/kg	83.4	70	130		
	N (QCLot: 1968790)	El 666 62. GG GTGTTGGGGT		233			1 144		
B1823888-017	D7	FROM OR R	71-43-2	2 ma/ka	71.9	70	130		
ID 1023000-U17	D7	EP080-SD: Benzene	108-88-3	2 mg/kg	71.9	70	130		
		EP080-SD: Toluene	100-00-3	2 mg/kg	14.0	70	130		
	(QCLot: 2049811)								
B1823888-021	OP2_42 / 0.5-1.0	EP080-SD: Benzene	71-43-2	2 mg/kg	77.0	70	130		
		EP080-SD: Toluene	108-88-3	2 mg/kg	73.6	70	130		
P090: Organotin	Compounds (QCLot: 1968803)								
B1823888-017	D7	EP090: MonobutyItin	78763-54-9	1.25 µgSn/kg	# 27.0	35	130		
		EP090: Dibutyltin	1002-53-5	1.25 µgSn/kg	104	20	130		
		EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	90.7	20	130		
P090: Organotin	Compounds (QCLot: 1968838)								
B1823888-005	OP2 44 (0.5-1.0)	EP090: Monobutyltin	78763-54-9	1.25 µgSn/kg	# 7.90	35	130		
	_ ,	EP090: Dibutyltin	1002-53-5	1.25 µgSn/kg	# Not	20	130		
		,			Determined				
		EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	# Not	20	130		
					Determined				
P090: Organotin	Compounds (QCLot: 2049812)								
B1823888-021	OP2_42 / 0.5-1.0	EP090: Monobutyltin	78763-54-9	1.25 µgSn/kg	# 18.4	35	130		
		EP090: Dibutyltin	1002-53-5	1.25 µgSn/kg	81.0	20	130		
		EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	63.8	20	130		
P131A: Organoc	hlorine Pesticides (QCLot: 1972855)								
B1823888-016	OP2 33 (0-0.5)	EP131A: Aldrin	309-00-2	5 μg/kg	65.6	23	153		
		EP131A: alpha-BHC	319-84-6	5 μg/kg	81.7	18	156		
		EP131A: beta-BHC	319-85-7	5 μg/kg	66.4	25	153		
		EP131A: delta-BHC	319-86-8	5 μg/kg	103	25	147		
		EP131A: 4.4`-DDD	72-54-8	5 μg/kg	46.1	26	150		
		EP131A: 4.4`-DDE	72-55-9	5 μg/kg	83.7	31	125		
		EP131A: 4.4`-DDT	50-29-3	5 μg/kg	99.4	23	163		
		EP131A: Dieldrin	60-57-1	5 μg/kg	68.3	30	140		

Page

: 17 of 19 : EB1823888 Amendment 3 Work Order : ADVISIAN PTY LTD Client

ub-Matrix: SOIL				I M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
boratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P131A: Organoci	nlorine Pesticides (QCLot: 1972855) -	continued					
B1823888-016	OP2_33 (0-0.5)	EP131A: alpha-Endosulfan	959-98-8	5 µg/kg	74.2	29	135
		EP131A: beta-Endosulfan	33213-65-9	5 μg/kg	91.2	23	141
		EP131A: Endosulfan sulfate	1031-07-8	5 μg/kg	117	16	156
		EP131A: Endrin	72-20-8	5 μg/kg	136	18	162
		EP131A: Endrin aldehyde	7421-93-4	5 μg/kg	61.6	20	116
		EP131A: Endrin ketone	53494-70-5	5 μg/kg	95.0	13	151
		EP131A: Heptachlor	76-44-8	5 μg/kg	87.0	24	170
		EP131A: Heptachlor epoxide	1024-57-3	5 μg/kg	59.8	28	140
		EP131A: Hexachlorobenzene (HCB)	118-74-1	5 µg/kg	54.0	18	144
		EP131A: gamma-BHC	58-89-9	5 µg/kg	74.9	22	158
		EP131A: Methoxychlor	72-43-5	5 μg/kg	154	24	158
		EP131A: cis-Chlordane	5103-71-9	5 µg/kg	48.2	27	139
		EP131A: trans-Chlordane	5103-74-2	5 μg/kg	49.9	30	138
P131A: Organoci	lorine Pesticides (QCLot: 2050937)						
B1823888-020	OP2_42 / 0.0-0.5	EP131A: Aldrin	309-00-2	5 μg/kg	61.1	23	153
		EP131A: alpha-BHC	319-84-6	5 μg/kg	52.8	18	156
		EP131A: beta-BHC	319-85-7	5 μg/kg	54.2	25	153
		EP131A: delta-BHC	319-86-8	5 μg/kg	67.9	25	147
		EP131A: 4.4`-DDD	72-54-8	5 μg/kg	65.0	26	150
		EP131A: 4.4`-DDE	72-55-9	5 μg/kg	55.5	23 16 18 20 13 24 28 18 22 24 27 30 23 18 25 25	125
		EP131A: 4.4`-DDT	50-29-3	5 μg/kg	49.8	23	163
		EP131A: Dieldrin	60-57-1	5 μg/kg	65.5	30	140
		EP131A: alpha-Endosulfan	959-98-8	5 μg/kg	59.9	29	135
		EP131A: beta-Endosulfan	33213-65-9	5 μg/kg	81.2	29 23 16 18 20 13 24 28 18 22 24 27 30 23 18 25 26 31 23 30 29 23 16 18 20 13 24 28 18 20 24 27 30	141
		EP131A: Endosulfan sulfate	1031-07-8	5 μg/kg	63.9		156
		EP131A: Endrin	72-20-8	5 μg/kg	82.2	18	162
		EP131A: Endrin aldehyde	7421-93-4	5 μg/kg	99.1	20	116
		EP131A: Endrin ketone	53494-70-5	5 μg/kg	60.6	13	151
		EP131A: Heptachlor	76-44-8	5 μg/kg	57.3	24	170
		EP131A: Heptachlor epoxide	1024-57-3	5 μg/kg	58.4	28	140
		EP131A: Hexachlorobenzene (HCB)	118-74-1	5 μg/kg	42.3	18	144
		EP131A: gamma-BHC	58-89-9	5 μg/kg	53.8	22	158
		EP131A: Methoxychlor	72-43-5	5 µg/kg	65.5	24	158
		EP131A: cis-Chlordane	5103-71-9	5 µg/kg	55.2		139
		EP131A: trans-Chlordane	5103-74-2	5 μg/kg	63.7	30	138
P132B: Polynucle	ear Aromatic Hydrocarbons (QCLot: 1	972856)					
B1823888-016	OP2_33 (0-0.5)	EP132B-SD: Naphthalene	91-20-3	25 μg/kg	86.2	70	130
		EP132B-SD: 2-Methylnaphthalene	91-57-6	25 μg/kg	110	70	130
		EP132B-SD: Acenaphthylene	208-96-8	25 μg/kg	94.2	70	130

Page : 18 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

ub-Matrix: SOIL					atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P132B: Polynucle	ear Aromatic Hydrocarbons (QCLot: 19728	856) - continued					
EB1823888-016	OP2_33 (0-0.5)	EP132B-SD: Acenaphthene	83-32-9	25 μg/kg	84.9	70	130
		EP132B-SD: Fluorene	86-73-7	25 μg/kg	85.1	70	130
		EP132B-SD: Phenanthrene	85-01-8	25 μg/kg	70.2	70	130
		EP132B-SD: Anthracene	120-12-7	25 μg/kg	85.3	70	130
		EP132B-SD: Fluoranthene	206-44-0	25 μg/kg	71.7	70	130
		EP132B-SD: Pyrene	129-00-0	25 μg/kg	94.2	70	130
		EP132B-SD: Benz(a)anthracene	56-55-3	25 μg/kg	91.6	70	130
		EP132B-SD: Chrysene	218-01-9	25 μg/kg	98.6	70	130
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 μg/kg	84.6	70	130
			205-82-3				
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 μg/kg	96.9	70	130
		EP132B-SD: Benzo(e)pyrene	192-97-2	25 μg/kg	90.7	70	130
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 μg/kg	79.4	70	130
		EP132B-SD: Perylene	198-55-0	25 μg/kg	109	70	130
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 μg/kg	105	70	130
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 μg/kg	120	70	130
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	25 μg/kg	109	70	130
		EP132B-SD: Coronene	191-07-1	25 μg/kg	110	70	130
P132B: Polynucle	ear Aromatic Hydrocarbons (QCLot: 2050s	948)					
EB1823888-020	OP2 42 / 0.0-0.5	EP132B-SD: Naphthalene	91-20-3	25 μg/kg	101	70	130
	_	EP132B-SD: 2-Methylnaphthalene	91-57-6	25 μg/kg	92.5	70	130
		EP132B-SD: Acenaphthylene	208-96-8	25 μg/kg	115	70	130
		EP132B-SD: Acenaphthene	83-32-9	25 µg/kg	95.2	70	130
		EP132B-SD: Fluorene	86-73-7	25 μg/kg	102	70	130
		EP132B-SD: Phenanthrene	85-01-8	25 μg/kg	100	70	130
		EP132B-SD: Anthracene	120-12-7	25 μg/kg	109	70	130
		EP132B-SD: Fluoranthene	206-44-0	25 μg/kg	128	70	130
		EP132B-SD: Pyrene	129-00-0	25 μg/kg	110	70	130
		EP132B-SD: Benz(a)anthracene	56-55-3	25 μg/kg	103	70	130
		EP132B-SD: Chrysene	218-01-9	25 μg/kg	81.4	70	130
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 μg/kg	107	70	130
			205-82-3				
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 μg/kg	89.4	70	130
		EP132B-SD: Benzo(e)pyrene	192-97-2	25 μg/kg	97.5	70	130
		· ///	50-32-8	25 μg/kg	123	70	130
		EP132B-SD: Benzo(a)pyrene	00 02 0				
		EP132B-SD: Benzo(a)pyrene EP132B-SD: Perylene	198-55-0	25 μg/kg	99.7	70	130
		EP132B-SD: Perylene		25 μg/kg 25 μg/kg	99.7 109	70 70	130 130
		(). 5	198-55-0				

Page : 19 of 19

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Sub-Matrix: SOIL		Matrix Spike (MS) Report							
						Recovery L	imits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP132B: Polynucle	EP132B: Polynuclear Aromatic Hydrocarbons (QCLot: 2050948) - continued								
EB1823888-020	OP2_42 / 0.0-0.5	EP132B-SD: Coronene	191-07-1	25 μg/kg	104	70	130		

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EB1823888** Page : 1 of 14

Amendment : 3

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Telephone : +61 7 3552 8662

Project : 301001.02018 - Port of Mackay Sediment Sampling Date Samples Received : 03-Oct-2018
Site : Issue Date : 29-Nov-2018

Sampler : NICHOLAS BAINTON No. of samples received : 19

Order number : No. of samples analysed : 19

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Laboratory Control outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Watrix. Coll							
Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Ouplicate (DUP) RPDs							
EG020-SD: Total Metals in Sediments by ICPMS	EB1823888004	OP2_44 (0-0.5)	Lead	7439-92-1	62.5 %	0% - 50%	RPD exceeds LOR based limits
EG020-SD: Total Metals in Sediments by ICPMS	EB1823888004	OP2_44 (0-0.5)	Zinc	7440-66-6	45.5 %	0% - 20%	RPD exceeds LOR based limits
EG020-SD: Total Metals in Sediments by ICPMS	EB1823888014	OP2_36 (0.5-1.0)	Zinc	7440-66-6	22.3 %	0% - 20%	RPD exceeds LOR based limits
aboratory Control Spike (LCS) Recoveries							
EP090: Organotin Compounds	QC-2049812-002		Monobutyltin	78763-54-9	156 %	36-128%	Recovery greater than upper control limit
latrix Spike (MS) Recoveries							
EP090: Organotin Compounds	EB1823888017	D7	Monobutyltin	78763-54-9	27.0 %	35-130%	Recovery less than lower data quality objective
EP090: Organotin Compounds	EB1823888005	OP2_44 (0.5-1.0)	Monobutyltin	78763-54-9	7.90 %	35-130%	Recovery less than lower data quality objective
EP090: Organotin Compounds	EB1823888021	OP2_42 / 0.5-1.0	Monobutyltin	78763-54-9	18.4 %	35-130%	Recovery less than lower data quality objective
EP090: Organotin Compounds	EB1823888005	OP2_44 (0.5-1.0)	Dibutyltin	1002-53-5	Not Determined		MS recovery not determined, background level greater than or equal to 4x spike level.
EP090: Organotin Compounds	EB1823888005	OP2_44 (0.5-1.0)	Tributyltin	56573-85-4	Not Determined		MS recovery not determined, background level greater than or equal to 4x spike level.

Outliers : Analysis Holding Time Compliance

Matrix: SOIL

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA010: Conductivity (1:5)							
Soil Glass Jar - Unpreserved							
OP2_18 (0-0.5)		09-Oct-2018	03-Oct-2018	6			
Soil Glass Jar - Unpreserved							
OP2_32 (0-0.5),	OP2_36 (0-0.5),	09-Oct-2018	05-Oct-2018	4			
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5)						
EA055: Moisture Content (Dried @ 105-11	10°C)						
Soil Glass Jar - Unpreserved							
OP2_42 / 0.0-0.5,	OP2_42 / 0.5-1.0,				21-Nov-2018	11-Oct-2018	41
OP2_42 / 1.0-1.5							
ED045G: Chloride by Discrete Analyser							
Soil Glass Jar - Unpreserved							
OP2_18 (0-0.5)		06-Nov-2018	24-Oct-2018	13			

Page : 3 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Matrix: SOIL

Method	Eve	traction / Dranaration			Analysis	
	Date extracted	traction / Preparation Due for extraction		Date analysed	Analysis Due for analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days overdue	Date allalyseu	Due for analysis	Days overdue
ED045G: Chloride by Discrete Analyser - Analysis Holding Time Compliance						
Soil Glass Jar - Unpreserved						
OP2_32 (0-0.5), OP2_36 (0-0.5),	06-Nov-2018	26-Oct-2018	11			
OP2_36 (0.5-1.0), OP2_36 (1.0-1.5)						
EG035T: Total Recoverable Mercury by FIMS (Low Level)						
Soil Glass Jar - Unpreserved						
OP2_42 / 0.0-0.5, OP2_42 / 0.5-1.0,	23-Nov-2018	25-Oct-2018	29	28-Nov-2018	25-Oct-2018	34
OP2_42 / 1.0-1.5						
EP003: Total Organic Carbon (TOC) in Soil						
Pulp Bag						
OP2_42 / 0.5-1.0, OP2_42 / 1.0-1.5	26-Nov-2018	25-Oct-2018	32	26-Nov-2018	25-Oct-2018	32
Snap Lock Bag						
OP2_42 / 0.0-0.5	26-Nov-2018	25-Oct-2018	32	26-Nov-2018	25-Oct-2018	32
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions						
Soil Glass Jar - Unpreserved						
OP2_42 / 0.0-0.5, OP2_42 / 0.5-1.0,	23-Oct-2018	11-Oct-2018	12			
OP2_42 / 1.0-1.5						
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons						
Soil Glass Jar - Unpreserved						
OP2_42 / 0.0-0.5, OP2_42 / 0.5-1.0,	23-Oct-2018	11-Oct-2018	12			
OP2_42 / 1.0-1.5						
EP080-SD / EP071-SD: Total Recoverable Hydrocarbons						
Soil Glass Jar - Unpreserved						
OP2_42 / 0.0-0.5, OP2_42 / 0.5-1.0,	23-Oct-2018	11-Oct-2018	12	24-Oct-2018	11-Oct-2018	13
OP2_42 / 1.0-1.5						
EP080-SD: BTEXN						
Soil Glass Jar - Unpreserved						
OP2_42 / 0.0-0.5, OP2_42 / 0.5-1.0,	23-Oct-2018	11-Oct-2018	12	24-Oct-2018	11-Oct-2018	13
OP2_42 / 1.0-1.5						
EP090: Organotin Compounds						
Soil Glass Jar - Unpreserved						
OP2_42 / 0.5-1.0	01-Nov-2018	11-Oct-2018	21			
Soil Glass Jar - Unpreserved						
OP2_42 / 0.0-0.5, OP2_42 / 1.0-1.5	23-Oct-2018	11-Oct-2018	12			
EP131A: Organochlorine Pesticides						
Soil Glass Jar - Unpreserved						
OP2_42 / 0.0-0.5, OP2_42 / 0.5-1.0,	30-Oct-2018	11-Oct-2018	19			
OP2_42 / 1.0-1.5						
EP132B: Polynuclear Aromatic Hydrocarbons						

Page : 4 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Matrix: SOIL

matrix out							
Method			Extraction / Preparation	Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EP132B: Polynuclear Aromatic Hydro	carbons - Analysis Holding Time Compliance						
Soil Glass Jar - Unpreserved							
OP2_42 / 0.0-0.5,	OP2_42 / 0.5-1.0,	29-Oct-2018	11-Oct-2018	18			
OP2_42 / 1.0-1.5							

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Matrix: SOIL					Evaluation	i: * = Holding time	breach, • - with	in noiding ti	
Method						Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluati	
EA010: Conductivity (1:5)									
Soil Glass Jar - Unpreserved (EA010) OP2_18 (0-0.5)		26-Sep-2018	09-Oct-2018	03-Oct-2018	<u>*</u>	09-Oct-2018	06-Nov-2018	1	
Soil Glass Jar - Unpreserved (EA010)									
OP2_32 (0-0.5),	OP2_36 (0-0.5),	28-Sep-2018	09-Oct-2018	05-Oct-2018	±	09-Oct-2018	06-Nov-2018	✓	
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5)								
EA033-A: Actual Acidity									
Snap Lock Bag - frozen (EA033)									
OP2_18 (0-0.5)		26-Sep-2018	26-Oct-2018	26-Sep-2019	✓	26-Oct-2018	24-Jan-2019	✓	
Snap Lock Bag - frozen (EA033)									
OP2_32 (0-0.5),	OP2_36 (0-0.5),	28-Sep-2018	26-Oct-2018	28-Sep-2019	✓	26-Oct-2018	24-Jan-2019	✓	
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5)								
EA033-B: Potential Acidity									
Snap Lock Bag - frozen (EA033) OP2_18 (0-0.5)		26-Sep-2018	26-Oct-2018	26-Sep-2019	1	26-Oct-2018	24-Jan-2019	1	
Snap Lock Bag - frozen (EA033)									
OP2_32 (0-0.5),	OP2_36 (0-0.5),	28-Sep-2018	26-Oct-2018	28-Sep-2019	✓	26-Oct-2018	24-Jan-2019	✓	
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5)								
EA033-C: Acid Neutralising Capacity									
Snap Lock Bag - frozen (EA033)									
OP2_18 (0-0.5)		26-Sep-2018	26-Oct-2018	26-Sep-2019	✓	26-Oct-2018	24-Jan-2019	✓	
Snap Lock Bag - frozen (EA033)				00.0			04.1.0045		
OP2_32 (0-0.5),	OP2_36 (0-0.5),	28-Sep-2018	26-Oct-2018	28-Sep-2019	✓	26-Oct-2018	24-Jan-2019	✓	
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5)								

Page : 5 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding tim		
Method		Sample Date	E	xtraction / Preparation		Analysis				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
EA033-D: Retained Acidity										
Snap Lock Bag - frozen (EA033) OP2_18 (0-0.5)		26-Sep-2018	26-Oct-2018	26-Sep-2019	1	26-Oct-2018	24-Jan-2019	✓		
Snap Lock Bag - frozen (EA033)										
OP2_32 (0-0.5),	OP2_36 (0-0.5),	28-Sep-2018	26-Oct-2018	28-Sep-2019	✓	26-Oct-2018	24-Jan-2019	✓		
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5)									
EA033-E: Acid Base Accounting										
Snap Lock Bag - frozen (EA033) OP2_18 (0-0.5)		26-Sep-2018	26-Oct-2018	26-Sep-2019	✓	26-Oct-2018	24-Jan-2019	✓		
Snap Lock Bag - frozen (EA033)										
OP2_32 (0-0.5),	OP2_36 (0-0.5),	28-Sep-2018	26-Oct-2018	28-Sep-2019	✓	26-Oct-2018	24-Jan-2019	✓		
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5)									
EA037: Ass Field Screening Analysis										
Snap Lock Bag - frozen (EA037) OP2_18 (0-0.5)		26-Sep-2018	10-Oct-2018	25-Mar-2019	1	10-Oct-2018	25-Mar-2019	✓		
Snap Lock Bag - frozen (EA037)										
OP2_32 (0-0.5),	OP2_36 (0-0.5),	28-Sep-2018	10-Oct-2018	27-Mar-2019	✓	10-Oct-2018	27-Mar-2019	✓		
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5)									
EA055: Moisture Content (Dried @ 105-110°C)										
Soil Glass Jar - Unpreserved (EA055)										
OP2_18 (0-0.5)		26-Sep-2018				08-Oct-2018	10-Oct-2018	✓		
Soil Glass Jar - Unpreserved (EA055)	000 40 / 0.5 4.0	07.0 0040				04 Nov. 0040	44 0-4 0040			
OP2_42 / 0.0-0.5,	OP2_42 / 0.5-1.0,	27-Sep-2018				21-Nov-2018	11-Oct-2018	×		
OP2_42 / 1.0-1.5										
Soil Glass Jar - Unpreserved (EA055) OP2_44 (0-0.5),	OP2_44 (0.5-1.0),	28-Sep-2018				08-Oct-2018	12-Oct-2018	√		
OP2_44 (0-0.5), OP2-45 (0-0.5),	OP2_44 (0.5-1.0), OP2-45 (0.5-1.0),	20-0ер-2010				00-001-2010	12-001-2010	V		
OP2-45 (0-0.5), OP2-45 (1.0-1.5),	OP2_32 (0-0.5),									
, ,	_ , ,									
OP2_38 (0-0.5) T1,	OP2_38 (0-0.5) T2,									
OP2_38 (0-0.5) T3, OP2_36 (0.5-1.0),	OP2_36 (0-0.5), OP2_36 (1.0-1.5),									
	D7,									
OP2_33 (0-0.5), OP2_21 (0-0.5)	DI,									
EA150: Particle Sizing			T T					I		
Snap Lock Bag (EA150H) OP2_42 / 0.0-0.5,	OP2_42 / 0.5-1.0,	27-Sep-2018				27-Nov-2018	26-Mar-2019	1		
_	OP2_42 / 0.5-1.0,	27-3ep-2010				27-1404-2018	20-Mai-2019	V		
OP2_42 / 1.0-1.5 Snap Lock Bag (EA150H)										
OP2_44 (0-0.5),	OP2 44 (0.5-1.0),	28-Sep-2018				19-Oct-2018	27-Mar-2019	1		
OP2-45 (0-0.5),	OP2-45 (0.5-1.0),					.0 000 2010	2010	•		
OP2-45 (0-0.5), OP2-45 (1.0-1.5),	OP2 38 (0-0.5) T1,									
· /	OP2_36 (0-0.5) 11, OP2_38 (0-0.5) T3,									
OP2_38 (0-0.5) T2,	UF2_30 (U-U.3) 13,									
OP2_21 (0-0.5)										

Page : 6 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	n: × = Holding time	g time breach ; ✓ = Within holding		
Method		Sample Date	Ex	traction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA150: Soil Classification based on Particle Size	e								
Snap Lock Bag (EA150H)									
OP2_42 / 0.0-0.5,	OP2_42 / 0.5-1.0,	27-Sep-2018				27-Nov-2018	26-Mar-2019	✓	
OP2_42 / 1.0-1.5									
Snap Lock Bag (EA150H)									
OP2_44 (0-0.5),	OP2_44 (0.5-1.0),	28-Sep-2018				19-Oct-2018	27-Mar-2019	✓	
OP2-45 (0-0.5),	OP2-45 (0.5-1.0),								
OP2-45 (1.0-1.5),	OP2_38 (0-0.5) T1,								
OP2_38 (0-0.5) T2,	OP2_38 (0-0.5) T3,								
OP2_21 (0-0.5)									
EA151: Settleability 10%									
Snap Lock Bag (EA151-10)									
OP2_44 (0-0.5),	OP2_44 (0.5-1.0),	28-Sep-2018				19-Oct-2018	27-Mar-2019	✓	
OP2-45 (0-0.5),	OP2-45 (0.5-1.0),								
OP2-45 (1.0-1.5),	OP2_38 (0-0.5) T1,								
OP2_38 (0-0.5) T2,	OP2_38 (0-0.5) T3,								
OP2_21 (0-0.5)	_ ,								
EA151: Settleability 20%									
Snap Lock Bag (EA151-20)									
OP2_44 (0-0.5),	OP2_44 (0.5-1.0),	28-Sep-2018				19-Oct-2018	27-Mar-2019	✓	
OP2-45 (0-0.5),	OP2-45 (0.5-1.0),								
OP2-45 (1.0-1.5),	OP2_38 (0-0.5) T1,								
OP2_38 (0-0.5) T2,	OP2_38 (0-0.5) T3,								
OP2_21 (0-0.5)	_								
EA152: Soil Particle Density									
Snap Lock Bag (EA152)									
OP2_42 / 0.0-0.5,	OP2_42 / 0.5-1.0,	27-Sep-2018				27-Nov-2018	26-Mar-2019	✓	
OP2_42 / 1.0-1.5									
Snap Lock Bag (EA152)									
OP2_44 (0-0.5),	OP2_44 (0.5-1.0),	28-Sep-2018				19-Oct-2018	27-Mar-2019	✓	
OP2-45 (0-0.5),	OP2-45 (0.5-1.0),								
OP2-45 (1.0-1.5),	OP2_38 (0-0.5) T1,								
OP2_38 (0-0.5) T2,	OP2_38 (0-0.5) T3,								
OP2_21 (0-0.5)									
ED045G: Chloride by Discrete Analyser									
Soil Glass Jar - Unpreserved (ED045G)				04.0.4.0045			04.5		
OP2_18 (0-0.5)		26-Sep-2018	06-Nov-2018	24-Oct-2018	×	06-Nov-2018	04-Dec-2018	✓	
Soil Glass Jar - Unpreserved (ED045G)				00.0.4.0040			04.0		
OP2_32 (0-0.5),	OP2_36 (0-0.5),	28-Sep-2018	06-Nov-2018	26-Oct-2018	se	06-Nov-2018	04-Dec-2018	✓	
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5)								

Page : 7 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020-SD: Total Metals in Sediments by I	CPMS							
Soil Glass Jar - Unpreserved (EG020-SD)								
OP2_18 (0-0.5)		26-Sep-2018	08-Oct-2018	25-Mar-2019	✓	08-Oct-2018	25-Mar-2019	✓
Soil Glass Jar - Unpreserved (EG020-SD)								
OP2_42 / 0.0-0.5,	OP2_42 / 0.5-1.0,	27-Sep-2018	23-Nov-2018	26-Mar-2019	✓	28-Nov-2018	26-Mar-2019	✓
OP2_42 / 1.0-1.5								
Soil Glass Jar - Unpreserved (EG020-SD)								
OP2_44 (0-0.5),	OP2_44 (0.5-1.0),	28-Sep-2018	08-Oct-2018	27-Mar-2019	✓	08-Oct-2018	27-Mar-2019	✓
OP2-45 (0-0.5),	OP2-45 (0.5-1.0),							
OP2-45 (1.0-1.5),	OP2_32 (0-0.5),							
OP2_38 (0-0.5) T1,	OP2_38 (0-0.5) T2,							
OP2_38 (0-0.5) T3,	OP2_36 (0-0.5),							
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5),							
OP2_21 (0-0.5)								
Soil Glass Jar - Unpreserved (EG020-SD)								
OP2_33 (0-0.5),	D7	28-Sep-2018	08-Oct-2018	27-Mar-2019	✓	09-Oct-2018	27-Mar-2019	✓
EG035T: Total Recoverable Mercury by Fl	IMS CONTRACTOR OF THE CONTRACT							
Soil Glass Jar - Unpreserved (EG035T-LL)		00.0 0040	00 0-4 0040	24-Oct-2018		00 0-4 0040	24-Oct-2018	
OP2_18 (0-0.5)		26-Sep-2018	08-Oct-2018	24-UCI-2016	✓	08-Oct-2018	24-001-2016	✓
Soil Glass Jar - Unpreserved (EG035T-LL)	000 44 (0.5.4.0)	28-Sep-2018	08-Oct-2018	26-Oct-2018		08-Oct-2018	26-Oct-2018	
OP2_44 (0-0.5),	OP2_44 (0.5-1.0),	26-Sep-2016	08-OCI-2018	20-061-2010	✓	06-OCI-2016	20-001-2016	✓
OP2-45 (0-0.5),	OP2-45 (0.5-1.0),							
OP2-45 (1.0-1.5),	OP2_32 (0-0.5),							
OP2_38 (0-0.5) T1,	OP2_38 (0-0.5) T2,							
OP2_38 (0-0.5) T3,	OP2_36 (0-0.5),							
OP2_36 (0.5-1.0),	OP2_36 (1.0-1.5),							
OP2_21 (0-0.5)								
Soil Glass Jar - Unpreserved (EG035T-LL)								
OP2_33 (0-0.5),	D7	28-Sep-2018	08-Oct-2018	26-Oct-2018	✓	09-Oct-2018	26-Oct-2018	✓
EG035T: Total Recoverable Mercury by Fl	MS (Low Level)							
Soil Glass Jar - Unpreserved (EG035T-LL)				05.0 1.0015			05.01.00/5	
OP2_42 / 0.0-0.5,	OP2_42 / 0.5-1.0,	27-Sep-2018	23-Nov-2018	25-Oct-2018	<u>*</u>	28-Nov-2018	25-Oct-2018	*
OP2_42 / 1.0-1.5								

Page : 8 of 14

Work Order EB1823888 Amendment 3 : ADVISIAN PTY LTD Client

301001.02018 - Port of Mackay Sediment Sampling Project

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = With	in holding tim
Method		Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP003: Total Organic Carbon (TOC) in Soil								
Pulp Bag (EP003) OP2_18 (0-0.5)		26-Sep-2018	17-Oct-2018	24-Oct-2018	1	17-Oct-2018	24-Oct-2018	✓
Pulp Bag (EP003) OP2_42 / 0.5-1.0,	OP2_42 / 1.0-1.5	27-Sep-2018	26-Nov-2018	25-Oct-2018	*	26-Nov-2018	25-Oct-2018	×
Pulp Bag (EP003) OP2_44 (0-0.5), OP2-45 (0-0.5), OP2-45 (1.0-1.5), OP2_38 (0-0.5) T1, OP2_38 (0-0.5) T3, OP2_36 (0.5-1.0), OP2_33 (0-0.5), OP2_21 (0-0.5) Snap Lock Bag (EP003) OP2_42 / 0.0-0.5	OP2_44 (0.5-1.0), OP2-45 (0.5-1.0), OP2_32 (0-0.5), OP2_38 (0-0.5) T2, OP2_36 (0-0.5), OP2_36 (1.0-1.5), D7,	28-Sep-2018	17-Oct-2018	26-Oct-2018	✓ ·	17-Oct-2018	26-Oct-2018	√
EP004: Organic Matter		27 30p 2010	20 1107 2010	20 000 2010		20 1101 20 10	20 000 2010	×
Soil Glass Jar - Unpreserved (EP004) OP2_18 (0-0.5)		26-Sep-2018	10-Oct-2018	24-Oct-2018	✓	10-Oct-2018	24-Oct-2018	✓
Soil Glass Jar - Unpreserved (EP004) OP2_32 (0-0.5), OP2_36 (0.5-1.0),	OP2_36 (0-0.5), OP2_36 (1.0-1.5)	28-Sep-2018	10-Oct-2018	26-Oct-2018	✓	10-Oct-2018	26-Oct-2018	✓
EP080/071: Total Recoverable Hydrocarbo	ns - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071-SD) OP2_42 / 0.0-0.5, OP2_42 / 1.0-1.5	OP2_42 / 0.5-1.0,	27-Sep-2018	23-Oct-2018	11-Oct-2018	*	24-Oct-2018	02-Dec-2018	✓
Soil Glass Jar - Unpreserved (EP071-SD) OP2_33 (0-0.5),	D7	28-Sep-2018	08-Oct-2018	12-Oct-2018	✓	10-Oct-2018	17-Nov-2018	√

Page : 9 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL Evaluation: x = Holding time breach; ✓ = Within holding time breach to the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the solution in the solution is the solution in the s								
Method		Sample Date	Ex	ktraction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080-SD / EP071-SD: Total Petroleum Hydrocarbon	s							
Soil Glass Jar - Unpreserved (EP080-SD)				11.0.1.0010			44.0.4.0040	
OP2_42 / 0.0-0.5		27-Sep-2018	23-Oct-2018	11-Oct-2018	<u>*</u>	24-Oct-2018	11-Oct-2018	x
Soil Glass Jar - Unpreserved (EP071-SD) OP2_42 / 0.0-0.5		27-Sep-2018	23-Oct-2018	11-Oct-2018	1 2	24-Oct-2018	02-Dec-2018	✓
Soil Glass Jar - Unpreserved (EP080-SD) OP2_42 / 0.5-1.0		27-Sep-2018	23-Oct-2018	11-Oct-2018	*	24-Oct-2018	11-Oct-2018	×
Soil Glass Jar - Unpreserved (EP071-SD) OP2_42 / 0.5-1.0		27-Sep-2018	23-Oct-2018	11-Oct-2018	<u> </u>	24-Oct-2018	02-Dec-2018	✓
Soil Glass Jar - Unpreserved (EP080-SD) OP2_42 / 1.0-1.5		27-Sep-2018	23-Oct-2018	11-Oct-2018	±c.	24-Oct-2018	11-Oct-2018	×
Soil Glass Jar - Unpreserved (EP071-SD) OP2_42 / 1.0-1.5		27-Sep-2018	23-Oct-2018	11-Oct-2018	Ŀ	24-Oct-2018	02-Dec-2018	✓
Soil Glass Jar - Unpreserved (EP080-SD) OP2_33 (0-0.5),	D7	28-Sep-2018	08-Oct-2018	12-Oct-2018	1	08-Oct-2018	12-Oct-2018	✓
Soil Glass Jar - Unpreserved (EP071-SD) OP2_33 (0-0.5),	D7	28-Sep-2018	08-Oct-2018	12-Oct-2018	1	10-Oct-2018	17-Nov-2018	✓
EP080-SD / EP071-SD: Total Recoverable Hydrocarb	ons							
Soil Glass Jar - Unpreserved (EP080-SD) OP2_42 / 0.0-0.5, OP2_42 / 1.0-1.5	OP2_42 / 0.5-1.0,	27-Sep-2018	23-Oct-2018	11-Oct-2018	×	24-Oct-2018	11-Oct-2018	*
Soil Glass Jar - Unpreserved (EP080-SD) OP2_33 (0-0.5),	D7	28-Sep-2018	08-Oct-2018	12-Oct-2018	✓	08-Oct-2018	12-Oct-2018	√
EP080-SD: BTEXN								
Soil Glass Jar - Unpreserved (EP080-SD) OP2_42 / 0.0-0.5,	OP2_42 / 0.5-1.0,	27-Sep-2018	23-Oct-2018	11-Oct-2018	*	24-Oct-2018	11-Oct-2018	×
OP2_42 / 1.0-1.5								
Soil Glass Jar - Unpreserved (EP080-SD) OP2_33 (0-0.5),	D7	28-Sep-2018	08-Oct-2018	12-Oct-2018	1	08-Oct-2018	12-Oct-2018	✓

Page : 10 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL Evaluation: × = Holding time breach ; ✓ = Within holding									
Method		Sample Date	E	ktraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP090: Organotin Compounds									
Soil Glass Jar - Unpreserved (EP090) OP2_18 (0-0.5)		26-Sep-2018	08-Oct-2018	10-Oct-2018	✓	16-Oct-2018	17-Nov-2018	✓	
Soil Glass Jar - Unpreserved (EP090) OP2_42 / 0.5-1.0		27-Sep-2018	01-Nov-2018	11-Oct-2018	Ŀ	01-Nov-2018	11-Dec-2018	√	
Soil Glass Jar - Unpreserved (EP090) OP2_42 / 0.0-0.5,	OP2_42 / 1.0-1.5	27-Sep-2018	23-Oct-2018	11-Oct-2018	¥	25-Oct-2018	02-Dec-2018	1	
Soil Glass Jar - Unpreserved (EP090) OP2 33 (0-0.5),	D7	28-Sep-2018	08-Oct-2018	12-Oct-2018	√	10-Oct-2018	17-Nov-2018	1	
Soil Glass Jar - Unpreserved (EP090) OP2_44 (0-0.5), OP2-45 (0-0.5), OP2-45 (1.0-1.5), OP2_38 (0-0.5) T1, OP2_38 (0-0.5) T3, OP2_36 (0.5-1.0), OP2_21 (0-0.5)	OP2_44 (0.5-1.0), OP2-45 (0.5-1.0), OP2_32 (0-0.5), OP2_38 (0-0.5) T2, OP2_36 (0-0.5), OP2_36 (1.0-1.5),	28-Sep-2018	08-Oct-2018	12-Oct-2018	✓	16-Oct-2018	17-Nov-2018	✓	
EP131A: Organochlorine Pesticides			I			I	I		
Soil Glass Jar - Unpreserved (EP131A) OP2_42 / 0.0-0.5, OP2_42 / 1.0-1.5	OP2_42 / 0.5-1.0,	27-Sep-2018	30-Oct-2018	11-Oct-2018	¥	23-Nov-2018	09-Dec-2018	✓	
Soil Glass Jar - Unpreserved (EP131A) OP2_33 (0-0.5),	D7	28-Sep-2018	10-Oct-2018	12-Oct-2018	✓	15-Oct-2018	19-Nov-2018	√	
EP132B: Polynuclear Aromatic Hydrocarbons									
Soil Glass Jar - Unpreserved (EP132B-SD) OP2_42 / 0.0-0.5, OP2_42 / 1.0-1.5	OP2_42 / 0.5-1.0,	27-Sep-2018	29-Oct-2018	11-Oct-2018	¥	23-Nov-2018	08-Dec-2018	✓	
Soil Glass Jar - Unpreserved (EP132B-SD) OP2_33 (0-0.5),	D7	28-Sep-2018	11-Oct-2018	12-Oct-2018	✓	15-Oct-2018	20-Nov-2018	✓	

Page : 11 of 14

Work Order EB1823888 Amendment 3 ADVISIAN PTY LTD Client

Project 301001.02018 - Port of Mackay Sediment Sampling

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type			ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
ASS Field Screening Analysis	EA037	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride Soluble By Discrete Analyser	ED045G	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	4	27	14.81	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	1	5	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organochlorine Pesticides (Ultra-trace)	EP131A	2	9	22.22	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Organotin Analysis	EP090	4	19	21.05	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAHs in Sediments by GCMS(SIM)	EP132B-SD	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS (Low Level)	EG035T-LL	4	19	21.05	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals in Sediments by ICPMS	EG020-SD	4	19	21.05	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP003	3	23	13.04	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TPH - Semivolatile Fraction	EP071-SD	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX in Sediments	EP080-SD	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Chloride Soluble By Discrete Analyser	ED045G	2	5	40.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	1	9	11.11	5.00	√	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	11	9.09	5.00	√	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organochlorine Pesticides (Ultra-trace)	EP131A	2	9	22.22	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organotin Analysis	EP090	3	19	15.79	5.00	√	NEPM 2013 B3 & ALS QC Standard
PAHs in Sediments by GCMS(SIM)	EP132B-SD	2	5	40.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS (Low Level)	EG035T-LL	3	19	15.79	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Metals in Sediments by ICPMS	EG020-SD	3	19	15.79	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP003	2	23	8.70	5.00	√	NEPM 2013 B3 & ALS QC Standard
TPH - Semivolatile Fraction	EP071-SD	2	5	40.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX in Sediments	EP080-SD	2	5	40.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride Soluble By Discrete Analyser	ED045G	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	1	9	11.11	5.00		NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	11	9.09	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Organic Matter	EP004	1	5	20.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Organochlorine Pesticides (Ultra-trace)	EP131A	2	9	22.22	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Organotin Analysis	EP090	3	19	15.79	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
PAHs in Sediments by GCMS(SIM)	EP132B-SD	2	5	40.00	5.00		NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS (Low Level)	EG035T-LL	3	19	15.79	5.00		NEPM 2013 B3 & ALS QC Standard
, , (= ,	LOUGUI-LL	-				•	

Page : 12 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specificati
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Total Metals in Sediments by ICPMS	EG020-SD	3	19	15.79	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP003	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TPH - Semivolatile Fraction	EP071-SD	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX in Sediments	EP080-SD	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Organic Matter	EP004	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organochlorine Pesticides (Ultra-trace)	EP131A	2	9	22.22	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organotin Analysis	EP090	3	19	15.79	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAHs in Sediments by GCMS(SIM)	EP132B-SD	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS (Low Level)	EG035T-LL	3	19	15.79	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Metals in Sediments by ICPMS	EG020-SD	3	19	15.79	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TPH - Semivolatile Fraction	EP071-SD	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX in Sediments	EP080-SD	2	5	40.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 13 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples using a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Total Soluble Salts	EA014	SOIL	In house: The concentration of Total Soluble Salts in a soil is calculated from the Electrical conductivity of a water extract. This method is compliant with NEPM (2013) Schedule B(3) (Method 104)
Chromium Suite for Acid Sulphate Soils	EA033	SOIL	In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCl; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.
ASS Field Screening Analysis	* EA037	SOIL	In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines, version 2.1 June 2004. As received samples are tested for pH field and pH fox and assessed for a reaction rating.
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Settleability 10%	* EA151-10	SOIL	In house: Determination of the settling rate of sediment or sludge in 10% solids slurries in seawater
Settleability 20%	* EA151-20	SOIL	In house: Determination of the settling rate of sediment or sludge in 20% solids slurries in seawater
Soil Particle Density	* EA152	SOIL	Soil Particle Density by AS 1289.3.5.1-2006: Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method
Chloride Soluble By Discrete Analyser	ED045G	SOIL	In house: Referenced to APHA 4500-CI- E. The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm. Analysis is performed on a 1:5 soil / water leachate.
Total Metals in Sediments by ICPMS	EG020-SD	SOIL	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.
Total Mercury by FIMS (Low Level)	EG035T-LL	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Organic Carbon	EP003	SOIL	In house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.
Organic Matter	EP004	SOIL	In house: Referenced to AS1289.4.1.1 - 1997. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3).

Page : 14 of 14

Work Order : EB1823888 Amendment 3
Client : ADVISIAN PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
TPH - Semivolatile Fraction	EP071-SD	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
TRH Volatiles/BTEX in Sediments	EP080-SD	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Organotin Analysis	EP090	SOIL	In house: Referenced to USEPA SW 846 - 8270D Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quanitified against an established calibration curve.
Organochlorine Pesticides (Ultra-trace)	EP131A	SOIL	In house: Referenced to USEPA Method 3640 (GPC cleanup),3620 (Florisil), 8081/8082 (GC/µECD/µECD) This technique is compliant with NEPM (2013) Schedule B(3)
PAHs in Sediments by GCMS(SIM)	EP132B-SD	SOIL	In house: Referenced to USEPA 8270D GCMS Capillary column, SIM mode using large volume programmed temperature vaporisation injection.
Preparation Methods	Method	Matrix	Method Descriptions
Drying only	EN020D	SOIL	In house
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Organic Matter	EP004-PR	SOIL	In house: Referenced to AS1289.4.1.1 - 1997. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3) (Method 105)
Dry and Pulverise (up to 100g)	GEO30	SOIL	#
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids/ Sample Cleanup	ORG17A-UTP	SOIL	In house: Mechanical agitation (tumbler). 20g of sample, Na2SO4 and surrogate are extracted with 150mL 1:1 DCM/Acetone by end over end tumble. Samples are extracted, concentrated (by KD) and exchanged into an appropriate solvent for GPC and florisil cleanup as required.
Tumbler Extraction of Solids for LVI (Non-concentrating)	ORG17D	SOIL	In house: 10g of sample, Na2SO4 and surrogate are extracted with 50mL 1:1 DCM/Acetone by end over end tumbling. An aliquot is concentrated by nitrogen blowdown to a reduced volume for analysis if required.
Organotin Sample Preparation	ORG35	SOIL	In house: 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB1823888

Amendment : 3

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia

BRISBANE QLD, AUSTRALIA 4000 4053

 Telephone
 : -- Telephone
 : +61 7 3552 8662

 Facsimile
 : -- Facsimile
 : +61-7-3243 7218

Project : 301001.02018 - Port of Mackay Page : 1 of 4

Sediment Sampling

 Order number
 :
 Quote number
 : EB2018ADVISI0003 (BN/185/18)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site :

Sampler : NICHOLAS BAINTON

Dates

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 8 Temperature : <6.0°C - Ice present

Receipt Detail : MEDIUM ESKY No. of samples received / analysed : 19 / 19

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please be advised, 1x glass jar for sample ""OP2_45 (1.0-1.5)" was broken in transit.
- 25/10/2018: SRN has been resent to acknowledge Cr suite added to samples 9, 13-15, 19 and due date adjusted.
- 2/11/2018: SRN has been resent to acknowledge Chloride added to samples, as per COC.
- 21/11/2018: SRN has been resent to acknowledge samples 'OP2_42...' have been added to this workorder from EB1823470, as per email from Alex 20/11/2018.
- Discounted Package Prices apply only when specific ALS Group Codes ("W", 'S", 'NT' suites) are referenced on COCs.
- Particle Sizing analysis will be conducted by ALS Environmental, Newcastle, NATA accreditation no. 825, Site No. 1656.
- Specialty Organics analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911 (Micro site no. 14913).
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.

: 21-Nov-2018 Issue Date

Page

: 2 of 4 : EB1823888 Amendment 3 Work Order Client : ADVISIAN PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessal tasks. Packages as the determin tasks, that are included in the sampling default 00:00 on is provided, the laboratory and component	ry for the execution may contain ad ation of moisture uded in the package. Itime is provided, the date of sampling date wi	ditional analyses, such content and preparation the sampling time will	5-103 Itent	SOIL - EA150H Particle Size Analysis by Hydrometer: AS1289	1-20	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	5T-LL y by FIMS - Low Level (SOLID)	SOIL - EP003 Total Organic Carbon (TOC) in Soil	EP090 (solids) otins
Matrix: SOIL Laboratory sample	Client sampling	Client sample ID	SOIL - EA055-103 Moisture Content	SOIL - EA150H Particle Size An	SOIL - EA151-20 Settleability 20%	SOIL - EG020-SD Total Metals in Se	SOIL - EG035T-LL Total Mercury by F	SOIL - EP003 Total Organic	SOIL - EP09 Organotins
ID EB1823888-004	date / time 28-Sep-2018 00:00	OP2 44 (0-0.5)	<u>v</u> ≥	o d	<u>₩</u>	v ⊢	v ⊢	<u>v</u> ⊢	<u>v</u> 0
EB1823888-005	•	_ ` ,	∀	∀	∀	∀	∀	∀	V
	28-Sep-2018 00:00	OP2_44 (0.5-1.0)	∀	∀	∀	∀	∀	∀	V
EB1823888-006	28-Sep-2018 00:00	OP2-45 (0-0.5)	∀	∀	∀		∀	∀	
EB1823888-007	28-Sep-2018 00:00	OP2-45 (0.5-1.0)				1		-	1
EB1823888-008	28-Sep-2018 00:00	OP2-45 (1.0-1.5)	√	✓	✓	✓	✓	✓	1
EB1823888-009	28-Sep-2018 00:00	OP2_32 (0-0.5)	✓			✓	✓	✓	1
EB1823888-010	28-Sep-2018 00:00	OP2_38 (0-0.5) T1	√	√	√	√	√	✓	√
EB1823888-011	28-Sep-2018 00:00	OP2_38 (0-0.5) T2	√	√	1	√	✓	✓	√
EB1823888-012	28-Sep-2018 00:00	OP2_38 (0-0.5) T3	√	✓	✓	✓	✓	✓	✓
EB1823888-013	28-Sep-2018 00:00	OP2_36 (0-0.5)	√			√	✓	✓	✓
EB1823888-014	28-Sep-2018 00:00	OP2_36 (0.5-1.0)	√			✓	✓	✓	✓
EB1823888-015	28-Sep-2018 00:00	OP2_36 (1.0-1.5)	✓			✓	✓	✓	✓
EB1823888-016	28-Sep-2018 00:00	OP2_33 (0-0.5)	✓			✓	✓	✓	✓
EB1823888-017	28-Sep-2018 00:00	D7	✓			✓	✓	✓	✓
EB1823888-018	28-Sep-2018 00:00	OP2_21 (0-0.5)	✓	✓	1	✓	✓	✓	✓
EB1823888-019	26-Sep-2018 00:00	OP2_18 (0-0.5)	✓			✓	✓	✓	✓
EB1823888-020	21-Nov-2018 00:00	OP2_42 / 0.0-0.5	✓	✓		✓	✓	✓	✓
EB1823888-021	21-Nov-2018 00:00	OP2_42 / 0.5-1.0	✓	✓		✓	✓	✓	✓
EB1823888-022	21-Nov-2018 00:00	OP2_42 / 1.0-1.5	✓	✓		1	✓	✓	✓
Matrix: SOIL Laboratory sample ID EB1823888-004	Client sampling date / time 28-Sep-2018 00:00	Client sample ID OP2 44 (0-0.5)	SOIL - EA010 (solids): Electrical Conductivity (1:5)	SOIL - EA014 Total Soluble Salts	SOIL - EA033 Chromium Suite for Acid Sulphate Soils	SOIL - EA037 ASS Field Screening Analysis	SOIL - EA151-10 Settleability 10%	SOIL - EA152 Soil Particle Density for Hydrometer Analysis	SOIL - EP004 Organic Matter in Soil (Walkley Black)
	-	_ , ,						-	
EB1823888-005	28-Sep-2018 00:00	OP2_44 (0.5-1.0)					√	√	
EB1823888-006	28-Sep-2018 00:00	OP2-45 (0-0.5)					✓	√	
EB1823888-007	28-Sep-2018 00:00	OP2-45 (0.5-1.0)					✓	✓	
EB1823888-008	28-Sep-2018 00:00	OP2-45 (1.0-1.5)					✓	✓	

: 21-Nov-2018 Issue Date

Page

: 3 of 4 : EB1823888 Amendment 3 Work Order Client : ADVISIAN PTY LTD

EB1823888-009	28-Sep-2018 00:00	OP2_32 (0-0.5)	SOIL - EA010 (solids): Electrical Conductivity (1:5)	SOIL - EA014 Total Soluble Salts	SOIL - EA033 Chromium Suite for Acid Sulphate Soils	SOIL - EA037 ASS Field Screening Analysis	SOIL - EA151-10 Settleability 10%	SOIL - EA152 Soil Particle Density for Hydrometer Analysis	SOIL - EP004 Organic Matter in Soil (Walkley Black)
EB1823888-010	28-Sep-2018 00:00	OP2_38 (0-0.5) T1					✓	✓	
EB1823888-011	28-Sep-2018 00:00	OP2_38 (0-0.5) T2					✓	✓	
EB1823888-012	28-Sep-2018 00:00	OP2_38 (0-0.5) T3					✓	✓	
EB1823888-013	28-Sep-2018 00:00	OP2_36 (0-0.5)	✓	✓	1	✓			✓
EB1823888-014	28-Sep-2018 00:00	OP2_36 (0.5-1.0)	✓	✓	✓	✓			✓
EB1823888-015	28-Sep-2018 00:00	OP2_36 (1.0-1.5)	✓	✓	1	✓			✓
EB1823888-018	28-Sep-2018 00:00	OP2_21 (0-0.5)					✓	✓	
EB1823888-019	26-Sep-2018 00:00	OP2_18 (0-0.5)	✓	✓	1	✓			✓
EB1823888-020	21-Nov-2018 00:00	OP2_42 / 0.0-0.5						✓	
EB1823888-021	21-Nov-2018 00:00	OP2_42 / 0.5-1.0						✓	
EB1823888-022	21-Nov-2018 00:00	OP2_42 / 1.0-1.5						✓	
Matrix: SOIL Laboratory sample ID EB1823888-009	Client sampling date / time 28-Sep-2018 00:00	Client sample ID OP2 32 (0-0.5)	SOIL - ED045G (solids) Chloride Soluble by Discrete Analyser	SOIL - EP071 - SD TRH ultra trace in sediments	SOIL - EP080-SD TRH(V)/BTEXN in Sediments	SOIL - EP131A OC Pesticides (Ultratrace)	SOIL - EP132B-SD Ultra-trace PAHs in Sediments		
	-	_ , ,							
EB1823888-013	28-Sep-2018 00:00	OP2_36 (0-0.5)	1						
EB1823888-014	28-Sep-2018 00:00	OP2_36 (0.5-1.0)	✓						
EB1823888-015	28-Sep-2018 00:00	OP2_36 (1.0-1.5)	Y	✓	1	√	√		
EB1823888-016	28-Sep-2018 00:00	OP2_33 (0-0.5)		∀	∀	∀	∀		
EB1823888-017	28-Sep-2018 00:00	D7	./	V	V	V	V		
EB1823888-019	26-Sep-2018 00:00	OP2_18 (0-0.5)	✓		1	1	,		
EB1823888-020	21-Nov-2018 00:00	OP2_42 / 0.0-0.5		√	1	√	√		
EB1823888-021	21-Nov-2018 00:00	OP2_42 / 0.5-1.0	_	√	1	√	√		
EB1823888-022	21-Nov-2018 00:00	OP2_42 / 1.0-1.5		✓	✓	✓	✓		

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: SOIL

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Due for	Due for	Samples Received		Instructions Received					
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation				
EA010: Electrical Conductivity (1:5)											

: 21-Nov-2018 Issue Date

Page

: 4 of 4 : EB1823888 Amendment 3 Work Order Client : ADVISIAN PTY LTD

Requested Deliverables

- EDI Format - XTab (XTAB)

ΛI	_EX	ĸΩ	СПІ	MIE	

ALEX ROOTHILL		
 *AU Certificate of Analysis - NATA (COA) 	Email	alex.kochnieff@advisian.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	alex.kochnieff@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	alex.kochnieff@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	alex.kochnieff@advisian.com
- Chain of Custody (CoC) (COC)	Email	alex.kochnieff@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	alex.kochnieff@advisian.com
- EDI Format - XTab (XTAB)	Email	alex.kochnieff@advisian.com
BILL BOYLSON		
 *AU Certificate of Analysis - NATA (COA) 	Email	bill.boylson@advisian.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	bill.boylson@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bill.boylson@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bill.boylson@advisian.com
- A4 - AU Tax Invoice (INV)	Email	bill.boylson@advisian.com
- Attachment - Report (SUBCO)	Email	bill.boylson@advisian.com
- Chain of Custody (CoC) (COC)	Email	bill.boylson@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	bill.boylson@advisian.com
- EDI Format - XTab (XTAB)	Email	bill.boylson@advisian.com
NICHOLAS BAINTON		
 *AU Certificate of Analysis - NATA (COA) 	Email	nicholas.bainton@advisian.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	nicholas.bainton@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	nicholas.bainton@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nicholas.bainton@advisian.com
- Attachment - Report (SUBCO)	Email	nicholas.bainton@advisian.com
- Chain of Custody (CoC) (COC)	Email	nicholas.bainton@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	nicholas.bainton@advisian.com

Email

nicholas.bainton@advisian.com

A

CLIENT: Advision Pty Ltu

CHAIN OF CUSTODY

ALS Laboratory: plasse rich +

CHARELS DE IN Booms Road ingests th book Prinds to to Charles and the original of the original original of the original origina

TURNAROUND REQUIREMENTS: RE Standard (A) (List due dale):

THE CHAPTER PROJUCTION FOR THE PROJUCTION OF THE

FOR LABORATORY USE ONLY (Greek)

23 (DM, 7) with Montage and an American short of the The Colored Montage and a colored

OFFICE: Lvl 31, 12 Creek), Street, Brisbane 4000		e.a. Ulim Tr		Standard or urgent TA	Γ(List de• de	te):				Cus	dody Sooi Proc	c7			Yero No.
PROJECT: Port of Mack	<u> </u>		2018 ALS QUO	1E NO.:				COC SEQ	UENCE NUM	BER (Circle	•) Free	ia:/farenia	n bnoks sæser	upon receipt?		Yus No 🕳 NIA
ORDER NUMBER:		SE ORDER NO.;		OF ORIGIN:			co	¢: 1 2	3 4	5 ê	7 Res	klom Sarr pha T	cumbatayning ou	Recept:	rate:	\sim
PROJECT MANAGER: B			PH; 0437008129				_			5 6	7 00%				्राप्तुः सम्ब	# Environmental Division
SAMPLER: Nicholas Bein			MOBILE; 042740		ISHED BY:		RE	CEMED BY			RELINGU	ІІЅНЕО ВУ;		-		Brisbane
COC Emailed to ALS? (AT (ordefault):	Nicholas E									٤	ζ.	1. 18 A. 18	Monte Ourier Defense
	ault to PM if no other addresses are i			@advision com, nicholas balate DATE/TiM	IE: 28.00.16 @ 16:18	•	DA.	TE/TIME:			CATE/TII.	4C		100	American C.	DATETIME: WOLK Order Heterenice
	•		am, an boyison	gradusan,enn												EB1823888 _
COMMEN ISISPECIAL FI	HANDLING/STORAGE OR DISPOSAL	Li		<u>.</u>											_	
ALS USE ONLY	SAMI MATRIY	PLE DETAILS Sckt(S) Water(W)		CONTAINER INFORMA	TION			ANALYSIS	REQUIRED	Including	SUITES (NH	Su to Grafeo q	rust be heled in	allimit' au te pr	ice)	
		3 CALL(3) ************************************	-:			l		When Mar	etan repuest	oper/y Total (fingles eq pdje	roquired) at Dree	olved (Nels Alexa	t totle may ved	·	
		1										:	'			Commercis on filely continuous leavis, dilutions, re
ļ			i I		ı											
LABID i	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE	TOTAL BOTTLES	_	4	']	ļ	!		.			
	37411 22 12	VIII VIII VIII VIII VIII VIII VIII VII	MANUAL OF THE PARTY OF THE PART	rufor to codes below)	TOTAL GOTTLES	1 2	ž				Ē		1			
						[# ;	ě	=		1	Ţ	(Sor.)	dr. dr.		!	I elephone : ~ 61-7-3243 7222
						2	Jalo X	РНРАН	b 0	S. S	200	8 8	20 ₹	İ		
SNF	OP2_42 (0-0.5)	27.09.18	S	None	3 x 250ml var 2 x 8ag	1	1	1	1		1		"		1	1 Jar HCLD, 1 bag HOLD
SNR 💳 📗	QP2 42 (0.5-1.0)	27 09.18	s	Nane	3 x 250ml Jar 2 x 8 ag	1	1	1	١,		1					Jar FOLD 1'bag HOLD
SNR	OP2_42 (1 0-1 6)	27.09.18	s	None	3 x 250m*Jar 2 x Nag	1	1	1	1	ļ		1			 	1 Jar HOLD, 1 bag HOLD
ry .	∩P2_44 (0-0.5)	28.09.10	s	North	3 x 250ml Jav I x Baq	1	1	•	i	ļ	. 1				<u> </u>	1 Jan HOLD, NG HOLD BAG
5	OPS_44 (0.5-1.0)	28.09, 15	٠ ع	None	3 x 250ml Jar 1 x Bag	1	1	ı			, 1	+-	†	!		1.tor HOLO, NO HOLD BAG
	OP7-45 (0-0.5)	26,09,16	, s	Nana	3 x 250mil Jer 1 x Beg		ı				١,				l -	1 Jar NOLD, NO HOLD BAG
**	OP2-45 (0.5-1.0)	26.09.16	\$	None	3 x 250 ml Jar 1 x Bag		1				Ť ·	<u> </u>	 		1	1.lar (ICLD, NO HOLD BAG
الشر	OF7-45 (1 0-1 5)	28.09.18	5	Nane	3 x 250mil Jar 1 x Beg	_,				 	<u> </u>				<u> </u>	I JAY HOLD, NO HOLD BAG
পী	OP2 32 (040 5)	28.09.18	s.	Nore	3 x 250ml Jar 1 x Bag	ı i	1		ļ -			1	1			1 Jar HOLD, 1 ASSITO BAG IND HOLD BAG
	CHS 3R (040/9) L1	28.00.18	5	None	3 x 250mi Joi L x Rag	1	1	-			1		ľ		1	1 Jar HOLD, NO HOLD BAG
	O+2_38 (0-0.5) 12	28,00,18	5	None	3 x 250mt dat L x Bog		1		Í	·	1				i	1 var HOLD, NO HOLD BAG
; į	GP2_38 (D-0 5) T3	28,09,18	5	None	3 x 250 mil Jar 1 x Bag						1					1 Jar HOLD NO HOLD BAG
3	CP2_30 (0-0-5)	28.09.1B	· s	None	3 x 250 ml Jar 2 x Bag	•	1			-:		j 1	1		·	1 Jay HOLD, 1 ASS/EC BAG, NO HOLD BAG
''	OP2_36 (0.5-1.0)	26,09,16	i s	Nane	13 x 250 ml.tar 2 x Bag		_ !					1	1			1 Jar HOLD, 1 ASSNEC BAG, NO HOLD BAG
14	OP2_36 (1.0-1.5)	Z8.DR.18	3	None	3 x 250m Jar 2 x 8ag	1	1	!	L	I .		1	1			1 Jar HOLD, 1 ASS/EC BAG INC HOLD BAG
11/2	OP2 33 (0:0,5)	81.09.18	s .	None	3 x 250 milJaar 1 x 9ag	1 .	1	1	1							1 Jar HOLD, 1 bag HOLO
: 3	br!	28 09.18	s	None	Sx 250 mi Jay 1 x Easy	1	1	1	1		 		1			I Jer HÖLD, 1 bag HOLD
	D8	28 09 12	S	None	3 x 250 mululer 1 x 5 ag	1	•		1				Ĺ			1 Jan HOLD, 1 barg HOLD - PILE ASE FORWARD ALL DE SAMPLES TO SGS FOR ANALYSIS
1.5	OP2, 21 (0-0.5)	28.09.18	s .	None	3 x 250 ml Jan 1 x Beg	•]	1				_ · _		L			1 Jer HOLD, NO HOLD BAG
9.	OP2_18 (0-0.5)	26.09.18	5	None	3 x 250ml Jar 2 x Bag	1	1		! 			1	1			1 Jar HÖLD, 1 ASS/EC BAG, NO HOLD BAG
				EDTAL					İ							
= YOM NOTHON PARAMENT AT	id • VOA inal Sodium diaulphata Freserved	I. VS → VOA Vital Sulfurio Preserved. /	AV – Alfkniold Unor	ydroxida:Cd Presignad, S = Sod um Hydroxida resorved Vial SG = Sultuno Presignad, Amber (Name H = utilizancene	Amber Glana U	r jalenderved Let 1 mag	AP - Airfreigi	t Unpressived	Planto						
 Zinc Austria Preserved Bot 	No. E = ED IA Preserved Bottles: S1 - Simi	le Brittle: ASS = Plastic Riva ke Arist	Subdista Soils: B =	Unpreserved Heat Lite Lunnin Indian Preserve	Handler STT - Store -	indiana Flateria		and Bottler		OUNDER PAGE	e	r - rumumseli	Jan Charles	- wet0.		

CERTIFICATE OF ANALYSIS

Work Order : EB1827308

Client : ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ---

Project : 301001.02018 - Port of Mackay Sediment Sampling

Order number

C-O-C number : ----

Sampler : NICHOLAS BAINTON

Site : ---

Quote number : BN/185/18

No. of samples received : 4
No. of samples analysed : 1

Page : 1 of 3

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 09-Nov-2018 13:01

Date Analysis Commenced : 15-Nov-2018

Issue Date : 21-Nov-2018 12:19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Page : 2 of 3 Work Order : EB1827308

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 3 Work Order : EB1827308

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB_02A	 	
	C	lient sampli	ing date / time	24-Sep-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EB1827308-004	 	
				Result	 	
EA150: Particle Sizing						
+75µm		1	%	50	 	
+150µm		1	%	48	 	
+300µm		1	%	44	 	
+425µm		1	%	41	 	
+600µm		1	%	35	 	
+1180µm		1	%	22	 	
+2.36mm		1	%	12	 	
+4.75mm		1	%	7	 	
+9.5mm		1	%	<1	 	
+19.0mm		1	%	<1	 	
+37.5mm		1	%	<1	 	
+75.0mm		1	%	<1	 	
EA150: Soil Classification based of	on Particle Size					
Clay (<2 μm)		1	%	33	 	
Silt (2-60 µm)		1	%	16	 	
Sand (0.06-2.00 mm)		1	%	36	 	
Gravel (>2mm)		1	%	15	 	
Cobbles (>6cm)		1	%	<1	 	
EA152: Soil Particle Density						
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.56	 	

QUALITY CONTROL REPORT

Work Order : EB1827308

Client : ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ----

Project : 301001.02018 - Port of Mackay Sediment Sampling

Order number

C-O-C number : ---

Sampler : NICHOLAS BAINTON

Site · ---

Quote number : BN/185/18

No. of samples received : 4
No. of samples analysed : 1

Page : 1 of 3

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 09-Nov-2018

Date Analysis Commenced : 15-Nov-2018

Issue Date · 21-Nov-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Page : 2 of 3 Work Order : EB1827308

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Page : 3 of 3 Work Order : EB1827308

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

• No Method Blank (MB) or Laboratory Control Spike (LCS) Results are required to be reported.

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EB1827308** Page : 1 of 4

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Telephone : +61 7 3552 8662

Project : 301001.02018 - Port of Mackay Sediment Sampling Date Samples Received : 09-Nov-2018

Site :---- Issue Date : 21-Nov-2018

Site :---- Issue Date : 21-No
Sampler : NICHOLAS BAINTON No. of samples received : 4

Order number : No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4 Work Order : EB1827308

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

Width. GOIL				Lvaldation	. • - Holding time	breadin, within	ii nolaling tili
Method	Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA150: Particle Sizing							
Snap Lock Bag (EA150H)							
SB_02A	24-Sep-2018				20-Nov-2018	23-Mar-2019	✓
EA150: Soil Classification based on Particle Size							
Snap Lock Bag (EA150H)							
SB_02A	24-Sep-2018				20-Nov-2018	23-Mar-2019	✓
EA152: Soil Particle Density							
Snap Lock Bag (EA152)							
SB 02A	24-Sep-2018				20-Nov-2018	23-Mar-2019	1

Page : 3 of 4
Work Order : EB1827308

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Quality Control Parameter Frequency Compliance

No Quality Control data available for this section.

Page : 4 of 4 Work Order : EB1827308

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Soil Particle Density	EA152	SOIL	Soil Particle Density by AS 1289.3.5.1-2006: Methods of testing soils for engineering purposes - Soil classification tests - Determination of the soil particle density of a soil - Standard method
Preparation Methods	Method	Matrix	Method Descriptions
Sample Compositing	EN020	SOIL	Equal weights of each original soil are taken, then mixed and homogenised. The combined mixture is labelled as a new sample.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB1827308

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Customer Services EB

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia

4053

 Telephone
 : --- Telephone
 : +61-7-3243 7222

 Facsimile
 : --- Facsimile
 : +61-7-3243 7218

Project : 301001.02018 - Port of Mackay Page : 1 of 2

BRISBANE QLD, AUSTRALIA 4000

Sediment Sampling

 Order number
 :
 Quote number
 : EB2018ADVISI0002 (EN/222)

 C-O-C number
 ; --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : NICHOLAS BAINTON

Dates

Date

Delivery Details

Mode of Delivery : Samples On Hand Security Seal : Not Available

No. of coolers/boxes : ---
Receipt Detail : Temperature : ---
No. of samples received / analysed : 4 / 1

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- This workorder has been created to rebatch samples from EB1823470.
- Discounted Package Prices apply only when specific ALS Group Codes ("W", 'S", 'NT' suites) are referenced on COCs.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.

Issue Date : 12-Nov-2018

Page

: 2 of 2 : EB1827308 Amendment 0 Work Order Client : ADVISIAN PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

EB1827308-001 · SB 02 (T1) - EB1823470 001 · [24-Sep-2018] EB1827308-002 [24-Sep-2018] ; SB_02 (T2) - EB1823470 002 EB1827308-003 [24-Sep-2018] ; SB_02 (T3) - EB1823470 003

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such + Soil Particle as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date 'article Sizing with Hydrometer is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time 30IL - EA150H/EA152 Sample Compositing component Matrix: SOIL **30IL - EN020** Client sample ID Laboratory sample Client sampling ID date / time EB1827308-001 24-Sep-2018 00:00 SB 02 (T1) EB182347... EB1827308-002 24-Sep-2018 00:00 SB_02 (T2) EB182347... EB1827308-003 24-Sep-2018 00:00 SB 02 (T3) EB182347... EB1827308-004 24-Sep-2018 00:00 SB 02A

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE - A4 - AU Tax Invoice (INV)

- A4 - AU Tax Invoice (INV)	Email	accounts.payable@worleyparsons.c
		om
BILL BOYLSON		
 *AU Certificate of Analysis - NATA (COA) 	Email	bill.boylson@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	bill.boylson@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bill.boylson@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bill.boylson@advisian.com
- Chain of Custody (CoC) (COC)	Email	bill.boylson@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	bill.boylson@advisian.com
- EDI Format - XTab (XTAB)	Email	bill.boylson@advisian.com

Environmental Division Brisbane Work Order Reference

EB1827308

From: Kochnieff, Alex (Brisbane) [mailto:ALEX.KOCHNIEFF@advisian.com]

Sent: Friday, 9 November 2018 1:01 PM

To: Caroline Hill <caroline.hill@ALSGlobal.com> Subject: RE: EB1823470 - Port of Mackay

Hi Caroline,

Thanks for providing these volumes. So we can undertake specialised geotechnical analysis at Wagners Cement we need to gather as much volume as possible. Therefore can I request the following:

- 1. ALS to mix / homogenise SB_02 (T1), SB_02 (T2), and SB_02 (T3) and label as SB_02A
- 2. Sub-sample SB_02A so that PSD analysis can be completed by ALS....only take the minimum volume required
- 3. Forward remaining SB_02A and SB_45 to Wagners Cement: 47 Pamela Street, Pinkenba QLD 4008 (ph: 07 3621 1111) / Contact: Russell Genrich, EFC R&D Laboratory Manager (Ph: 0474 042 189)

Please feel free to contact me to discuss.

Kind regards,

Alex Kochnieff

Senior Environmental Engineer

Level 31, 12 Creek St | Brisbane City, QLD 4000 **P** +61 7 3319 3940 | **M** +61 468 660 301 E alex.kochnieff@advisian.com

www.advisian.com | Follow Advisian

CERTIFICATE OF ANALYSIS

Work Order : EB1828301

: ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ---

Client

Project : 301001.02018 - Port of Mackay Sediment Sampling

 Order number
 : ---

 C-O-C number
 : ---

 Sampler
 : ---

 Site
 : ---

Quote number : BN/185/18

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 6

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 21-Nov-2018 16:50

Date Analysis Commenced : 21-Nov-2018

Issue Date : 28-Nov-2018 15:25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD Kim McCabe Senior Inorganic Chemist Brisbane Acid Sulphate Soils, Stafford, QLD Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD

Page : 2 of 6 Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EA150H: Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1 2006 was unable to be performed on samples 8, 13, 17, 18, 19 as insufficient sample was supplied by the client. Typical sediment SPD values used for calculations and consequently NATA endorsement does not apply to hydrometer results.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Page : 3 of 6
Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

iub-Matrix: SOIL Matrix: SOIL)		Cli	ent sample ID	SB_45	SB_52	SB_58	B1_02 (T1)	B3_14
·	Cli	ient sampli	ing date / time	21-Nov-2018 00:00	21-Nov-2018 00:00	21-Nov-2018 00:00	21-Nov-2018 00:00	21-Nov-2018 00:00
Compound	CAS Number	LOR	Unit	EB1828301-006	EB1828301-008	EB1828301-009	EB1828301-013	EB1828301-017
				Result	Result	Result	Result	Result
A010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm	4050	6950	6810	6690	7450
A014 Total Soluble Salts								
Total Soluble Salts		5	mg/kg	13200	22600	22100	21700	24200
A033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	8.4	8.6	8.8	8.9	8.8
Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.060	0.104	0.140	0.108	0.149
acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	37	65	88	68	93
A033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	7.38	8.44	8.07	8.66	8.75
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	1480	1690	1610	1730	1750
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	2.36	2.70	2.58	2.77	2.80
A033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)		10	mole H+ / t	<10	<10	<10	<10	<10
Liming Rate		1	kg CaCO3/t	<1	<1	<1	<1	<1
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.06	0.10	0.14	0.11	0.15
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	37	65	88	68	93
Liming Rate excluding ANC		1	kg CaCO3/t	3	5	6	5	7
A037: Ass Field Screening Analysis								
pH (F)		0.1	pH Unit	8.6	8.5	8.7	8.4	8.4
pH (Fox)		0.1	pH Unit	6.3	6.5	6.4	6.6	6.6
Reaction Rate		1	-	2	2	2	2	2
A055: Moisture Content (Dried @ 105-11	0°C)							
Moisture Content		0.1	%	35.3	63.1	58.5	59.7	65.0
D045G: Chloride by Discrete Analyser								
Chloride	16887-00-6	10	mg/kg	8410	25000	21600	22200	28100

Page : 4 of 6 Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Page : 5 of 6
Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	B4_01	B5_08	TB_26	
	Cli	ient sampli	ing date / time	21-Nov-2018 00:00	21-Nov-2018 00:00	21-Nov-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1828301-018	EB1828301-019	EB1828301-029	
•				Result	Result	Result	
EA010: Conductivity (1:5)							
Electrical Conductivity @ 25°C		1	μS/cm	7570	6610	7500	
EA014 Total Soluble Salts							
Total Soluble Salts		5	mg/kg	24600	21500	24400	
EA033-A: Actual Acidity							
pH KCI (23A)		0.1	pH Unit	8.7	8.8	8.8	
Titratable Actual Acidity (23F)		2	mole H+/t	<2	<2	<2	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	<0.02	
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)		0.005	% S	0.167	0.194	0.146	
acidity - Chromium Reducible Sulfur		10	mole H+ / t	104	121	91	
(a-22B)							
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	8.94	7.65	9.42	
acidity - Acid Neutralising Capacity		10	mole H+/t	1780	1530	1880	
(a-19A2)							
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	2.86	2.45	3.02	
(s-19A2)							
EA033-E: Acid Base Accounting							
ANC Fineness Factor		0.5	-	1.5	1.5	1.5	
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	<0.02	
Net Acidity (acidity units)		10	mole H+ / t	<10	<10	<10	
Liming Rate		1	kg CaCO3/t	<1	<1	<1	
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.17	0.19	0.14	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	104	121	91	
Liming Rate excluding ANC		1	kg CaCO3/t	8	9	7	
EA037: Ass Field Screening Analysis							
ӯ pH (F)		0.1	pH Unit	8.6	8.6	8.3	
pH (Fox)		0.1	pH Unit	6.8	6.5	6.5	
Reaction Rate		1	-	2	2	2	
EA055: Moisture Content (Dried @ 105-11	10°C)						
Moisture Content		0.1	%	69.4	58.2	65.7	
ED045G: Chloride by Discrete Analyser							
Chloride	16887-00-6	10	mg/kg	32500	21100	35500	
EP004: Organic Matter							

Page : 6 of 6
Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			B4_01	B5_08	TB_26	
	CI	ent samplii	ng date / time	21-Nov-2018 00:00	21-Nov-2018 00:00	21-Nov-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1828301-018	EB1828301-019	EB1828301-029	
				Result	Result	Result	
EP004: Organic Matter - Continued							
Organic Matter		0.5	%	3.2	2.7	3.0	

QUALITY CONTROL REPORT

Work Order : EB1828301

Client : ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ----

Project : 301001.02018 - Port of Mackay Sediment Sampling

Order number : ----

C-O-C number : ---Sampler : ----

Site

Quote number : BN/185/18

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 3

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 21-Nov-2018

Date Analysis Commenced : 21-Nov-2018

Issue Date : 28-Nov-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben FelgendrejerisSenior Acid Sulfate Soil ChemistBrisbane Acid Sulphate Soils, Stafford, QLDKim McCabeSenior Inorganic ChemistBrisbane Acid Sulphate Soils, Stafford, QLDKim McCabeSenior Inorganic ChemistBrisbane Inorganics, Stafford, QLD

Page : 2 of 3 Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA010: Conductivit	(1:5) (QC Lot: 2049814)								
EB1828301-006	SB_45	EA010: Electrical Conductivity @ 25°C		1	μS/cm	4050	4140	2.20	0% - 20%
EA033-A: Actual Ac	idity (QC Lot: 2049944)								
EB1828301-006	SB_45	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.00	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	0.00	No Limit
		EA033: pH KCl (23A)		0.1	pH Unit	8.4	8.6	2.35	0% - 20%
EA033-B: Potential	Acidity (QC Lot: 2049944)								
EB1828301-006	SB_45	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.060	0.063	5.16	0% - 50%
		EA033: acidity - Chromium Reducible Sulfur		10	mole H+ / t	37	39	5.16	No Limit
		(a-22B)							
EA033-C: Acid Neut	ralising Capacity (QC Lot	: 2049944)							
EB1828301-006	SB_45	EA033: Acid Neutralising Capacity (19A2)		0.01	% CaCO3	7.38	7.36	0.247	0% - 20%
		EA033: sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	2.36	2.36	0.00	0% - 20%
		(s-19A2)							
		EA033: acidity - Acid Neutralising Capacity		10	mole H+ / t	1480	1470	0.247	0% - 20%
		(a-19A2)							
EA037: Ass Field S	creening Analysis (QC Lo	t: 2049942)							
EB1828301-006	SB_45	EA037: pH (F)		0.1	pH Unit	8.6	8.6	0.00	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	6.3	6.3	0.00	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110°C)	(QC Lot: 2049816)							
EB1828301-006	SB_45	EA055: Moisture Content		0.1	%	35.3	35.3	0.00	0% - 20%
ED045G: Chloride b	y Discrete Analyser (QC L	ot: 2049815)							
EB1828301-006	SB_45	ED045G: Chloride	16887-00-6	10	mg/kg	8410	8410	0.00	0% - 20%

Page : 3 of 3 Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA010: Conductivity (1:5) (QCLot: 2049814)									
EA010: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	99.9	97	103	
EA033-A: Actual Acidity (QCLot: 2049944)									
EA033: pH KCI (23A)			pH Unit		4.5 pH Unit	100	70	130	
EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	24.6 mole H+ / t	78.9	70	130	
EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02					
EA033-B: Potential Acidity (QCLot: 2049944)									
EA033: Chromium Reducible Sulfur (22B)		0.005	% S	<0.005	0.23483 % S	99.5	70	130	
EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10					
EA033-C: Acid Neutralising Capacity (QCLot: 2049944)									
EA033: Acid Neutralising Capacity (19A2)		0.01	% CaCO3	<0.01	10 % CaCO3	106	70	130	
EA033: acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	<10					
EA033: sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	<0.01					
ED045G: Chloride by Discrete Analyser (QCLot: 2049815	5)								
ED045G: Chloride	16887-00-6	10	mg/kg	<10	50 mg/kg	100	83	119	
				<10	5000 mg/kg	100	83	119	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EB1828301** Page : 1 of 5

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Telephone : +61 7 3552 8662

Project : 301001.02018 - Port of Mackay Sediment Sampling Date Samples Received : 21-Nov-2018

Site : Issue Date : 28-Nov-2018

Sampler : --- No. of samples received : 8
Order number : --- No. of samples analysed : 8

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5
Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: ★ = Holding time breach; ✓ = Within holding time.

Matrix. GGIE							bicacii, with	iii iioidiiig tii		
Method			Ex	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluatio		
EA010: Conductivity (1:5)										
Soil Glass Jar - Unpreserved (EA010)										
SB_45,	SB_52,	21-Nov-2018	23-Nov-2018	28-Nov-2018	✓	23-Nov-2018	21-Dec-2018	✓		
SB_58,	B1_02 (T1),									
B3_14,	B4_01,									
B5_08,	TB_26									
EA033-A: Actual Acidity										
Snap Lock Bag - frozen (EA033)										
SB_45,	SB_52,	21-Nov-2018	22-Nov-2018	21-Nov-2019	✓	23-Nov-2018	20-Feb-2019	✓		
SB_58,	B1_02 (T1),									
B3_14,	B4_01,									
B5_08,	TB_26									
EA033-B: Potential Acidity										
Snap Lock Bag - frozen (EA033)										
SB_45,	SB_52,	21-Nov-2018	22-Nov-2018	21-Nov-2019	✓	23-Nov-2018	20-Feb-2019	✓		
SB_58,	B1_02 (T1),									
B3_14,	B4_01,									
B5_08,	TB_26									
EA033-C: Acid Neutralising Capacity										
Snap Lock Bag - frozen (EA033)										
SB_45,	SB_52,	21-Nov-2018	22-Nov-2018	21-Nov-2019	✓	23-Nov-2018	20-Feb-2019	✓		
SB_58,	B1_02 (T1),									
B3_14,	B4_01,									
B5_08,	TB_26									
EA033-D: Retained Acidity										
Snap Lock Bag - frozen (EA033)										
SB_45,	SB_52,	21-Nov-2018	22-Nov-2018	21-Nov-2019	✓	23-Nov-2018	20-Feb-2019	✓		
SB_58,	B1_02 (T1),									
B3_14,	B4_01,									
B5_08,	TB_26									

Page : 3 of 5
Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Sample Date Extraction / Preparation				Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA033-E: Acid Base Accounting								
Snap Lock Bag - frozen (EA033)								
SB_45,	SB_52,	21-Nov-2018	22-Nov-2018	21-Nov-2019	✓	23-Nov-2018	20-Feb-2019	✓
SB_58,	B1_02 (T1),							
B3_14,	B4_01,							
B5_08,	TB_26							
EA037: Ass Field Screening Analysis								
Snap Lock Bag - frozen (EA037)								
SB_45,	SB_52,	21-Nov-2018	23-Nov-2018	20-May-2019	✓	23-Nov-2018	20-May-2019	✓
SB_58,	B1_02 (T1),							
B3_14,	B4_01,							
B5_08,	TB_26							
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055)								
SB_45,	SB_52,	21-Nov-2018				21-Nov-2018	05-Dec-2018	✓
SB_58,	B1_02 (T1),							
B3_14,	B4_01,							
B5_08,	TB_26							
ED045G: Chloride by Discrete Analyser								
Soil Glass Jar - Unpreserved (ED045G)								
SB_45,	SB_52,	21-Nov-2018	23-Nov-2018	19-Dec-2018	✓	28-Nov-2018	21-Dec-2018	✓
SB_58,	B1_02 (T1),							
B3_14,	B4_01,							
B5_08,	TB_26							
EP004: Organic Matter								
Soil Glass Jar - Unpreserved (EP004)								
SB_45,	SB_52,	21-Nov-2018	28-Nov-2018	19-Dec-2018	✓	28-Nov-2018	19-Dec-2018	✓
SB_58,	B1_02 (T1),							
B3_14,	B4_01,							
B5_08,	TB_26							

Page : 4 of 5 Work Order EB1828301

Client ADVISIAN PTY LTD

301001.02018 - Port of Mackay Sediment Sampling Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: 🗴 = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	ОC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
ASS Field Screening Analysis	EA037	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride Soluble By Discrete Analyser	ED045G	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Chloride Soluble By Discrete Analyser	ED045G	2	8	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chloride Soluble By Discrete Analyser	ED045G	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Electrical Conductivity (1:5)	EA010	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : EB1828301

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Electrical Conductivity (1:5)	EA010	SOIL	In house: Referenced to Rayment and Lyons 3A1 and APHA 2510. Conductivity is determined on soil samples using a 1:5 soil/water leach. This method is compliant with NEPM (2013) Schedule B(3)
Total Soluble Salts	EA014	SOIL	In house: The concentration of Total Soluble Salts in a soil is calculated from the Electrical conductivity of a water extract. This method is compliant with NEPM (2013) Schedule B(3) (Method 104)
Chromium Suite for Acid Sulphate Soils	EA033	SOIL	In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCl; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.
ASS Field Screening Analysis	* EA037	SOIL	In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines, version 2.1 June 2004. As received samples are tested for pH field and pH fox and assessed for a reaction rating.
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Chloride Soluble By Discrete Analyser	ED045G	SOIL	In house: Referenced to APHA 4500-CI- E. The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm. Analysis is performed on a 1:5 soil / water leachate.
Organic Matter	EP004	SOIL	In house: Referenced to AS1289.4.1.1 - 1997. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3).
Preparation Methods	Method	Matrix	Method Descriptions
Drying only	EN020D	SOIL	In house
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Organic Matter	EP004-PR	SOIL	In house: Referenced to AS1289.4.1.1 - 1997. Dichromate oxidation method after Walkley and Black. This method is compliant with NEPM (2013) Schedule B(3) (Method 105)

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB1828301

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia

4053

 Telephone
 : -- Telephone
 : +61 7 3552 8662

 Facsimile
 : -- Facsimile
 : +61-7-3243 7218

Project : 301001.02018 - Port of Mackay Page : 1 of 2

BRISBANE QLD, AUSTRALIA 4000

Sediment Sampling

 Order number
 : --- Quote number
 : EB2018ADVISI0003 (BN/185/18)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site :

Dates

Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Not Available

No. of coolers/boxes : ---- Temperature : ---
Receipt Detail : MEDIUM ESKY No. of samples received / analysed : 8 / 8

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Sample results in this workorder have been transcribed from EB1823470.
- Discounted Package Prices apply only when specific ALS Group Codes ("W", 'S", 'NT' suites) are referenced on COCs.
- Particle Sizing analysis will be conducted by ALS Environmental, Newcastle, NATA accreditation no. 825. Site No. 1656.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818 (Micro site no. 18958).
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.

: 21-Nov-2018 Issue Date

Page

2 of 2 EB1828301 Amendment 0 Work Order Client : ADVISIAN PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determintasks, that are inclif no sampling default 00:00 on	ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of sampling date wi	be part of a laboratory ion of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date ll be assumed by the ckets without a time	EA010 (solids): Electrical Conductivity	- EA014 Soluble Salts	SOIL - EA033 Chromium Suite for Acid Sulphate Soils	- EA037 Field Screening Analysis	SOIL - EA055-103 Moisture Content	SOIL - ED045G (solids) Chloride Soluble by Discrete Analyser	SOIL - EP004 Organic Matter in Soil (Walkley Black)
Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL -	SOIL - Total S	SOIL - Chromi	SOIL - ASS FI	SOIL - Moistur	SOIL -	SOIL - Organ
EB1828301-006	21-Nov-2018 00:00	SB_45	1	✓	✓	1	1	✓	✓
EB1828301-008	21-Nov-2018 00:00	SB_52	1	✓	✓	1	1	✓	✓
EB1828301-009	21-Nov-2018 00:00	SB_58	✓	✓	✓	✓	✓	✓	✓
EB1828301-013	21-Nov-2018 00:00	B1_02 (T1)	1	✓	✓	1	1	✓	✓
EB1828301-017	21-Nov-2018 00:00	B3_14	✓	✓	✓	✓	✓	✓	✓
EB1828301-018	21-Nov-2018 00:00	B4_01	1	✓	✓	1	1	✓	✓
EB1828301-019	21-Nov-2018 00:00	B5_08	✓	✓	✓	✓	✓	✓	✓
EB1828301-029	21-Nov-2018 00:00	TB 26	✓	1	1	1	✓	✓	1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ALEX KOCHNIEFF

 *AU Certificate of Analysis - NATA (COA) *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email Email	alex.kochnieff@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	alex.kochnieff@advisian.com alex.kochnieff@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	alex.kochnieff@advisian.com
- A4 - AU Tax Invoice (INV)	Email	alex.kochnieff@advisian.com
- Chain of Custody (CoC) (COC)	Email	alex.kochnieff@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	alex.kochnieff@advisian.com
- EDI Format - XTab (XTAB)	Email	alex.kochnieff@advisian.com
BILL BOYLSON		
 *AU Certificate of Analysis - NATA (COA) 	Email	bill.boylson@advisian.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	bill.boylson@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bill.boylson@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bill.boylson@advisian.com
- A4 - AU Tax Invoice (INV)	Email	bill.boylson@advisian.com
- Chain of Custody (CoC) (COC)	Email	bill.boylson@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	bill.boylson@advisian.com
- EDI Format - XTab (XTAB)	Email	bill.boylson@advisian.com

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB1828853

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia

4053

 Telephone
 : -- Telephone
 : +61 7 3552 8662

 Facsimile
 : -- Facsimile
 : +61-7-3243 7218

Project : 301001.02018 - Port of Mackay Page : 1 of 3

BRISBANE QLD, AUSTRALIA 4000

Sediment Sampling

 Order number
 : EB2018ADVISI0003 (BN/185/18)

 C-O-C number
 : NEPM 2013 B3 & ALS QC Standard

Site :

Sampler : NICHOLAS BAINTON

Dates

Date

Delivery Details

Mode of Delivery : Samples On Hand Security Seal : Not Available

No. of coolers/boxes : --- Temperature : <6.0°C

Receipt Detail : REBATCH No. of samples received / analysed : 15 / 15

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- This work order has been created to rebatch samples from EB1823470 & EB1823888.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Analysis will be conducted by ALS Environmental, Newcastle, NATA accreditation no. 825, Site No. 1656.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.

From: Kochnieff, Alex (Brisbane) [mailto:ALEX.KOCHNIEFF@advisian.com]

Sent: Thursday, 22 November 2018 1:06 PM To: Caroline Hill < caroline.hill@ALSGlobal.com>

Subject: EB1823470, EB1823888

Good afternoon Caroline,

As discussed, we require additional PSD and settling rate analysis on the following samples:

	Workorder	ALS sample #	Ve	olume Remair	ning	Advisian Sample
			250mL Soil Jar	ASS Bag	Porewater Bag	Units
١.	EB1823470	5	1	1		LOR
2	EB1823470	7	2	2		SB_40
3	EB1823470	9	2.5	1	<u></u>	SB_50
4	EB1823470	16	1	2		SB_58
5	EB1823470	19	1,5	1		B1_07
6	EB1823470	24	1.75	2		B5_08
7[EB1823470	27	1.75	2	1	TB_05 (T1)
- B[EB1823470	29	2.75	3	1	TB_12
	EB1823470	35	0.5			TB_26
9	EB1823470	39	3.5	2		REF_03 H-3
10	EB1823888	9	2-3	Maybe 1	Unknown	
11	EB1823888	13	2-3	Maybe 2	Unknown	OP2_32 (0-0.5)
12	EB1823888	14	2-3	Maybe 2	Unknown	OP2_36 (0-0.5)
13[EB1823888	15	2-3	Maybe 2	Unknown	OP2_36 (0.5-1.0)
! 4	EB1823888	16	2	1	Unknown	OP2_36 (1.0-1.5)
15	EB1823888	19	3	Maybe 1	Unknown	OP2_33 (0-0.5) OP2_18 (0-0.5)

Please let me know if this is possible.

Kind regards,

Alex Kochnieff

Senior Environmental Engineer

Level 31, 12 Creek St | Brisbane City, QLD 4000 P +61 7 3319 3940 | M +61 468 660 301

E alex.kochnieff@advisian.com

www.advisian.com | Follow Advisian

Environmental Division

Brisbane

: 26-Nov-2018 Issue Date

Page

: 2 of 3 : EB1828853 Amendment 0 Work Order Client : ADVISIAN PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determintasks, that are inclif no sampling default 00:00 on	may contain ad ation of moisture uded in the package. time is provided, the date of sampling date wi	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	SOIL - EA150H Particle Size Analysis by Hydrometer: AS1289	SOIL - EA151-10 Settleability 10%	SOIL - EA151-20 Settleability 20%	SOIL - EA152 Soil Particle Density for Hydrometer Analysis
EB1828853-001	24-Sep-2018 00:00	SB_40	✓	✓	✓	✓
EB1828853-002	24-Sep-2018 00:00	SB_50	✓	✓	✓	✓
EB1828853-003	24-Sep-2018 00:00	SB_58	✓	✓	✓	✓
EB1828853-004	26-Sep-2018 00:00	B1_07	✓	✓	✓	✓
EB1828853-005	26-Sep-2018 00:00	B5_08	✓	✓	✓	✓
EB1828853-006	25-Sep-2018 00:00	TB_05 (T1)	✓	✓	✓	✓
EB1828853-007	25-Sep-2018 00:00	TB_12	✓	✓	✓	✓
EB1828853-008	25-Sep-2018 00:00	TB_26	✓	✓	✓	✓
EB1828853-009	25-Sep-2018 00:00	H-3	✓	✓	✓	✓
EB1828853-010	28-Sep-2018 00:00	OP2_32 (0-0.5)	✓	✓	✓	✓
EB1828853-011	28-Sep-2018 00:00	OP2_36 (0-0.5)	✓	✓	✓	✓
EB1828853-012	28-Sep-2018 00:00	OP2_36 (0.5-1.0)	✓	✓	✓	✓
EB1828853-013	28-Sep-2018 00:00	OP2_36 (1.0-1.5)	✓	✓	✓	✓
EB1828853-014	28-Sep-2018 00:00	OP2_33 (0-0.5)	✓	✓	✓	✓
EB1828853-015	26-Sep-2018 00:00	OP2_18 (0-0.5)	✓	1	✓	1

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 26-Nov-2018

Page : 3 of 3
Work Order : EB1828853 Amendment 0
Client : ADVISIAN PTY LTD

Requested Deliverables

Λ1		KO	\sim	NII	EFF
AL	^	NU	СΠ	IVII	ЕГГ

- *AU Certificate of Analysis - NATA (COA)	Email	alex.kochnieff@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	alex.kochnieff@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	alex.kochnieff@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	alex.kochnieff@advisian.com
- Attachment - Report (SUBCO)	Email	alex.kochnieff@advisian.com
- Chain of Custody (CoC) (COC)	Email	alex.kochnieff@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	alex.kochnieff@advisian.com
- EDI Format - XTab (XTAB)	Email	alex.kochnieff@advisian.com

BILL BOYLSON

- *AU Certificate of Analysis - NATA (COA)	Email	bill.boylson@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	bill.boylson@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bill.boylson@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bill.boylson@advisian.com
- A4 - AU Tax Invoice (INV)	Email	bill.boylson@advisian.com
- Attachment - Report (SUBCO)	Email	bill.boylson@advisian.com
- Chain of Custody (CoC) (COC)	Email	bill.boylson@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	bill.boylson@advisian.com
- EDI Format - XTab (XTAB)	Email	bill.boylson@advisian.com
NICHOLAS BAINTON		

- *AU Certificate of Analysis - NATA (COA)	Email	nicholas.bainton@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	nicholas.bainton@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	nicholas.bainton@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nicholas.bainton@advisian.com
- Attachment - Report (SUBCO)	Email	nicholas.bainton@advisian.com
- Chain of Custody (CoC) (COC)	Email	nicholas.bainton@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	nicholas.bainton@advisian.com
- EDI Format - XTab (XTAB)	Email	nicholas.bainton@advisian.com

STEPHEN NEALE

- *AU Certificate of Analysis - NATA (COA)	Email	stephen.neale@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	stephen.neale@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	stephen.neale@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	stephen.neale@advisian.com
- Attachment - Report (SUBCO)	Email	stephen.neale@advisian.com
- Chain of Custody (CoC) (COC)	Email	stephen.neale@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	stephen.neale@advisian.com
- EDI Format - XTab (XTAB)	Email	stephen.neale@advisian.com

CERTIFICATE OF ANALYSIS

Work Order : EB1828853

: ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ---

Project : 301001.02018 - Port of Mackay Sediment Sampling

Order number

Client

C-O-C number : ----

Sampler : NICHOLAS BAINTON

Site

Quote number : BN/185/18

No. of samples received : 15 No. of samples analysed : 15 Page : 1 of 5

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 22-Nov-2018 13:06

Date Analysis Commenced : 05-Dec-2018

Issue Date : 06-Dec-2018 10:27

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dianne Blane Laboratory Coordinator (2IC) Newcastle - Inorganics, Mayfield West, NSW

Page : 2 of 5 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EA150H: The matrix of samples fell outside the scope of the method. They contained extremely high dissolved salts which were unable to be removed from the sample without the loss of fine soil particles. Particle size results were calculated using an electrical conductivity correction consistent with the blank dispersant solution. Results should be scrutinised accordingly.
- EA151: ALS does not hold NATA accreditation for Settleability.

Page : 3 of 5
Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB_40	SB_50	SB_58	B1_07	B5_08
	C	ient sampli	ng date / time	24-Sep-2018 00:00	24-Sep-2018 00:00	24-Sep-2018 00:00	26-Sep-2018 00:00	26-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1828853-001	EB1828853-002	EB1828853-003	EB1828853-004	EB1828853-005
				Result	Result	Result	Result	Result
EA150: Particle Sizing								
+75μm		1	%	12	92	25	28	24
+150µm		1	%	8	85	6	25	14
+300µm		1	%	5	56	2	21	10
+425µm		1	%	4	28	2	17	8
+600µm		1	%	3	8	1	12	6
+1180µm		1	%	1	<1	<1	5	2
+2.36mm		1	%	<1	<1	<1	1	<1
+4.75mm		1	%	<1	<1	<1	<1	<1
+9.5mm		1	%	<1	<1	<1	<1	<1
+19.0mm		1	%	<1	<1	<1	<1	<1
+37.5mm		1	%	<1	<1	<1	<1	<1
+75.0mm		1	%	<1	<1	<1	<1	<1
EA150: Soil Classification based on Pa	article Size							
Clay (<2 μm)		1	%	40	4	36	46	43
Silt (2-60 μm)		1	%	43	1	30	24	29
Sand (0.06-2.00 mm)		1	%	16	95	34	27	27
Gravel (>2mm)		1	%	1	<1	<1	3	1
Cobbles (>6cm)		1	%	<1	<1	<1	<1	<1
EA151: Settleability 10%								
Ø Underflow Density		0.01	g/cm3	1.12	1.54	1.21	1.15	1.19
ø Underflow Solids		0.1	%	19.8	59.1	25.8	22.9	25.5
Ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.267	24.4	2.20	2.00	2.80
ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.030	1.80	0.067	0.021	0.058
ø Clarity		-	-	Clear	Clear	Clear	Clear	Clear
EA151: Settleability 20%								
Ø Underflow Density		0.01	g/cm3	1.13	1.49	1.18	1.18	1.15
ø Underflow Solids		0.1	%	23.2	58.4	24.1	24.1	24.9
Ø Settling Rate @ 50% of Settlement		0.001	mm/min	0.017	14.4	0.016	0.033	0.016
Ø Settling Rate @ 90% of Settlement		0.001	mm/min	0.010	0.200	0.016	0.010	0.016
ø Clarity		-	-	Clear	Clear	Clear	Clear	Clear
EA152: Soil Particle Density								
ø Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.65	2.63	2.61	2.58	2.62

Page : 4 of 5 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TB_05 (T1)	TB_12	TB_26	H-3	OP2_32 (0-0.5)
<u> </u>	CI	ient sampli	ng date / time	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	25-Sep-2018 00:00	28-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1828853-006	EB1828853-007	EB1828853-008	EB1828853-009	EB1828853-010
				Result	Result	Result	Result	Result
A150: Particle Sizing								
+75μm		1	%	21	2	3	54	42
+150µm		1	%	15	<1	1	25	30
+300µm		1	%	10	<1	<1	14	20
+425µm		1	%	7	<1	<1	6	16
+600µm		1	%	5	<1	<1	2	12
+1180µm		1	%	4	<1	<1	<1	5
+2.36mm		1	%	<1	<1	<1	<1	2
+4.75mm		1	%	<1	<1	<1	<1	<1
+9.5mm		1	%	<1	<1	<1	<1	<1
+19.0mm		1	%	<1	<1	<1	<1	<1
+37.5mm		1	%	<1	<1	<1	<1	<1
+75.0mm		1	%	<1	<1	<1	<1	<1
A150: Soil Classification based on Pa	article Size							
Clay (<2 µm)		1	%	40	46	44	26	31
Silt (2-60 µm)		1	%	34	42	52	14	19
Sand (0.06-2.00 mm)		1	%	24	12	4	60	47
Gravel (>2mm)		1	%	2	<1	<1	<1	3
Cobbles (>6cm)		1	%	<1	<1	<1	<1	<1
A151: Settleability 10%								
Underflow Density		0.01	g/cm3	1.16	1.06	1.05	1.21	1.21
Underflow Solids		0.1	%	26.1	20.0	20.2	30.6	31.7
Settling Rate @ 50% of Settlement		0.001	mm/min	2.80	0.267	0.267	1.80	3.80
Settling Rate @ 90% of Settlement		0.001	mm/min	0.075	0.036	0.032	0.083	0.067
Clarity		-	-	Clear	Clear	Clear	Clear	Clear
A151: Settleability 20%								
Underflow Density		0.01	g/cm3	1.15	1.11	1.14	1.32	1.27
Underflow Solids		0.1	%	24.1	22.9	21.5	36.1	37.5
Settling Rate @ 50% of Settlement		0.001	mm/min	0.017	0.009	0.017	1.00	2.60
Settling Rate @ 90% of Settlement		0.001	mm/min	0.002	0.009	0.004	0.025	0.033
Clarity		-	-	Clear	Clear	Clear	Clear	Clear
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.55	2.55	2.41	2.52	2.62

Page : 5 of 5 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

ALS

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	OP2_36 (0-0.5)	OP2_36 (0.5-1.0)	OP2_36 (1.0-1.5)	OP2_33 (0-0.5)	OP2_18 (0-0.5)
	CI	ient sampli	ng date / time	28-Sep-2018 00:00	28-Sep-2018 00:00	28-Sep-2018 00:00	28-Sep-2018 00:00	26-Sep-2018 00:00
Compound	CAS Number	LOR	Unit	EB1828853-011	EB1828853-012	EB1828853-013	EB1828853-014	EB1828853-015
				Result	Result	Result	Result	Result
A150: Particle Sizing								
+75μm		1	%	58	61	30	33	38
+150µm		1	%	50	55	20	20	28
+300µm		1	%	43	48	16	13	21
+425µm		1	%	38	44	13	11	17
+600µm		1	%	30	37	9	9	13
+1180µm		1	%	15	20	2	4	7
+2.36mm		1	%	5	10	<1	<1	3
+4.75mm		1	%	2	8	<1	<1	2
+9.5mm		1	%	<1	6	<1	<1	<1
+19.0mm		1	%	<1	<1	<1	<1	<1
+37.5mm		1	%	<1	<1	<1	<1	<1
+75.0mm		1	%	<1	<1	<1	<1	<1
A150: Soil Classification based on Pa	article Size							
Clay (<2 µm)		1	%	24	24	34	29	34
Silt (2-60 µm)		1	%	16	11	29	25	22
Sand (0.06-2.00 mm)		1	%	52	52	36	44	40
Gravel (>2mm)		1	%	8	13	1	2	4
Cobbles (>6cm)		1	%	<1	<1	<1	<1	<1
A151: Settleability 10%								
Underflow Density		0.01	g/cm3	1.21	1.27	1.18		1.18
Underflow Solids		0.1	%	35.2	40.3	31.4		30.2
Settling Rate @ 50% of Settlement		0.001	mm/min	4.00	3.40	2.40		2.00
Settling Rate @ 90% of Settlement		0.001	mm/min	0.067	0.050	0.067		0.075
Clarity		-	-	Clear	Clear	Clear		Clear
A151: Settleability 20%								
Underflow Density		0.01	g/cm3	1.31	1.34	1.25		1.23
Underflow Solids		0.1	%	40.1	44.0	35.6		35.4
Settling Rate @ 50% of Settlement		0.001	mm/min	3.00	2.80	0.400		0.600
Settling Rate @ 90% of Settlement		0.001	mm/min	0.025	0.025	0.011		0.009
Clarity		-	-	Clear	Clear	Clear		Clear
EA152: Soil Particle Density								
Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3	2.64	2.63	2.66	2.64	2.63

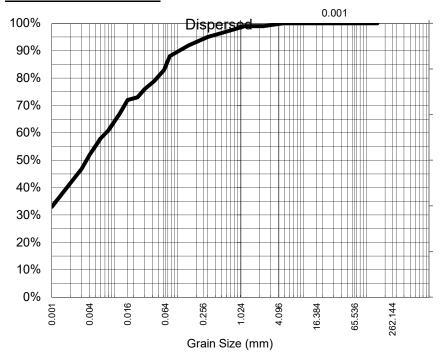
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-001 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: SB_40

Sediment Sampling

Particle Size Distribution

Ana	lysis	Notes

Test Method:

Samples analysed as received.

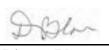
Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	99%
0.600	97%
0.425	96%
0.300	95%
0.150	92%
0.075	88%
Particle Size (microns)	
43	79%
30	76%
23	73%
16	72%
12	67%
8	61%
6	58%
4	52%
1	33%

<0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: Analysed: 30-Nov-18


<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

<u>Sample Description:</u> FINES, SAND <u>Dispersion Method</u> Shaker

Soil Particle Density (<2.36mm) 2.65

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Median Particle Size (mm)*

Dianne Blane
Laboratory Coordinator

Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

DATE REPORTED: 5-Dec-2018 **CLIENT:** Bill Boylson

DATE RECEIVED: 22-Nov-2018 **COMPANY:** ADVISIAN PTY LTD

EB1828853-002 / PSD ADDRESS: LEVEL 3 **REPORT NO:**


60 ALBERT STREET

BRISBANE

PROJECT: SAMPLE ID: 301001.02018 - Port Of Mackay SB 50

Sediment Sampling

Particle Size Distribution

	Anal	lysis	Notes
--	------	-------	-------

Samples analysed as received.

Particle Size (mm)	% Passing
1.18	100%
0.600	92%
0.425	72%
0.300	44%
0.150	15%
0.075	8%
Particle Size (microns)	
55	5%
39	5%
27	5%
19	5%
14	5%
10	5%
7	5%
5	5%
1	4%

Median Particle Size (mm)*	0.327
----------------------------	-------

30-Nov-18

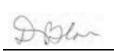
Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.3 states that hydrometer analysis is not applicable for Analysed: **Sample Comments:**

samples containing <10% fines (<75um). Results should be assessed

accordingly

NA **Limit of Reporting:** 1% Loss on Pretreatment


Dispersion Method Shaker **Sample Description:** SAND

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.63

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane Laboratory Coordinator **Authorised Signatory**

Page 1 of 1 Template Version PKV8.0 180919

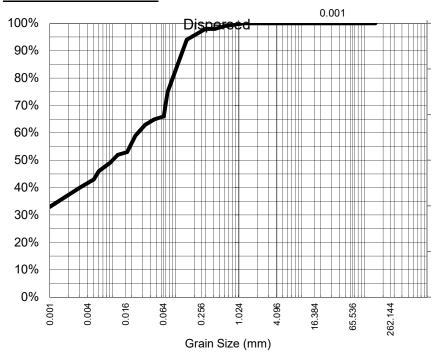
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-003 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: SB 58

Sediment Sampling

Particle Size Distribution

Anal	ysis	Notes

Samples analysed as received.

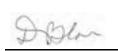
D (1 1 0 - ()	I 0/ D :
Particle Size (mm)	% Passing
1.18	100%
0.600	99%
0.425	98%
0.300	98%
0.150	94%
0.075	75%
Particle Size (microns)	
46	65%
33	63%
23	59%
17	53%
12	52%
9	49%
6	46%
5	43%
1	33%

Median Particle Size (mm)*	0.010

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


Sample Description: FINES, SAND Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.61

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Rewcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-004 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: B1_07

Sediment Sampling

Particle Size Distribution

Anal	ysis	Notes

Samples analysed as received.

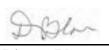
Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	95%
0.600	88%
0.425	83%
0.300	79%
0.150	75%
0.075	72%
Particle Size (microns)	
47	66%
33	65%
23	63%
17	62%
12	61%
9	59%
6	56%
5	54%
1	43%

Median Particle Size (r	nm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.58

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-005 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: B5 08

Sediment Sampling

Particle Size Distribution

Ana	lysis	Notes

Samples analysed as received.

Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	94%
0.425	92%
0.300	89%
0.150	86%
0.075	76%
Particle Size (microns)	
46	66%
33	65%
23	65%
16	61%
12	59%
9	56%
6	55%
4	52%
1	37%

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.62

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dolm

Dianne Blane
Laboratory Coordinator

Authorised Signatory

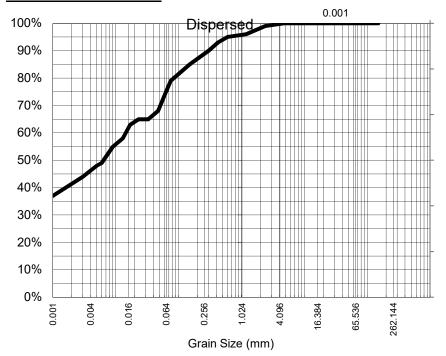
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-006 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: TB_05 (T1)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

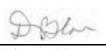
Particle Size (mm)	% Passing
,	, i
4.75	100%
2.36	99%
1.18	96%
0.600	95%
0.425	93%
0.300	90%
0.150	85%
0.075	79%
Particle Size (microns)	
47	68%
33	65%
23	65%
17	63%
13	58%
9	55%
6	49%
5	48%
1	37%

Median	Particle	Size	(mm)*	0.007
iviculari	railicie	SIZE	(1111111)	0.007

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.55

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Rewcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-007 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID: TB 12

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

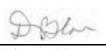
D (1.1.0) ()	I 0/ D :
Particle Size (mm)	% Passing
0.300	100%
0.150	99%
0.075	97%
Particle Size (microns)	
45	86%
32	84%
22	84%
16	83%
12	77%
9	73%
6	65%
5	58%
1	40%

|--|

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


Sample Description: FINES Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.55

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

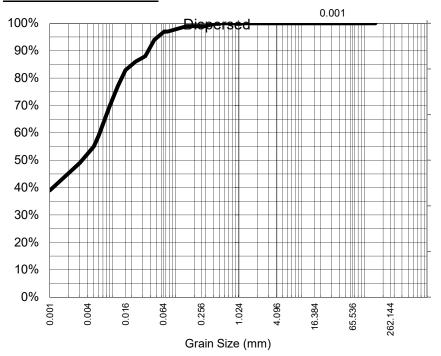
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-008 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID:

Sediment Sampling

Particle Size Distribution

Analysis Notes

Test Method:

Samples analysed as received.

AS1289.3.6.2/AS1289.3.6.3

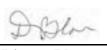
Particle Size (mm)	% Passing
0.425	100%
0.300	99%
0.150	99%
0.075	97%
Particle Size (microns)	
46	94%
33	88%
23	86%
16	83%
12	77%
9	70%
6	59%
5	55%
1	39%

TB 26

Median Particle Size (mm)* <0.006

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18


<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

Sample Description: FINES Dispersion Method Shaker

Soil Particle Density (<2.36mm) 2.41 (2.45)*

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

^{*} Soil Particle Density results fell outside the scope of AS 1289.3.6.3. Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

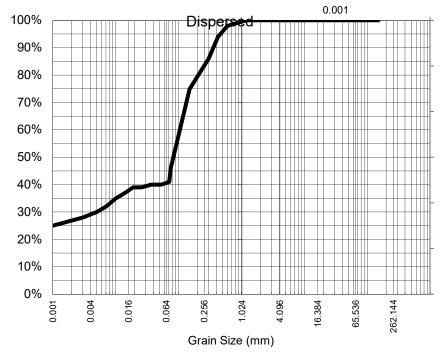
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Rewcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-009 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID:

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

D (1 1 0 - /)	I 0/ D :
Particle Size (mm)	% Passing
1.18	100%
0.600	98%
0.425	94%
0.300	86%
0.150	75%
0.075	46%
Particle Size (microns)	
53	40%
37	40%
26	39%
19	39%
14	37%
10	35%
7	32%
5	30%
1	25%

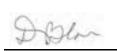
H-3

Median Particle Size	(mm)*	0.085
INICUIAITI ALLICIC OIZO	(1111111)	0.000

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.52

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-010 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 32 (0-0.5)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Test Method:

Samples analysed as received.

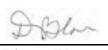
Particle Size (mm)	% Passing
4.75	100%
2.36	98%
1.18	95%
0.600	88%
0.425	84%
0.300	80%
0.150	70%
0.075	57%
Particle Size (microns)	
49	49%
35	46%
24	45%
17	44%
13	42%
9	39%
7	39%
5	35%
1	29%

Median Particle Size (mm)* 0.069

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

AS1289.3.6.2/AS1289.3.6.3

Sample Comments: 30-Nov-18


<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%

<u>Sample Description:</u> FINES, SAND <u>Dispersion Method</u> Shaker

Soil Particle Density (<2.36mm) 2.62

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

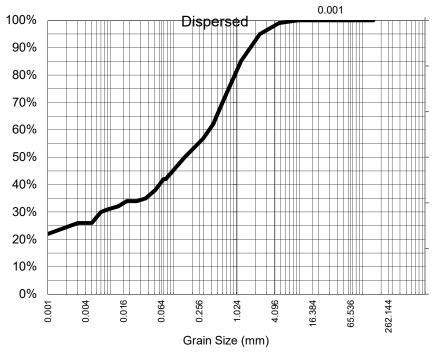
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-011 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 36 (0-0.5)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

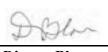
Particle Size (mm)	% Passing
9.50	100%
4.75	99%
2.36	95%
1.18	85%
0.600	70%
0.425	62%
0.300	57%
0.150	50%
0.075	42%
Particle Size (microns)	
51	38%
36	35%
26	34%
18	34%
13	32%
9	31%
7	30%
5	26%
1	22%

0.150

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.64

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Median Particle Size (mm)*

Dianne Blane
Laboratory Coordinator

Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-012 / PSD

60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 36 (0.5-1.0)

Sediment Sampling

Particle Size Distribution

Anal	ysis	Notes

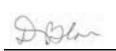
Samples analysed as received.

	Ta/ = .
Particle Size (mm)	% Passing
19.0	100%
9.50	94%
4.75	93%
2.36	90%
1.18	80%
0.600	63%
0.425	56%
0.300	52%
0.150	45%
0.075	39%
Particle Size (microns)	
51	34%
36	33%
26	33%
18	32%
13	31%
9	31%
7	29%
5	26%
1	23%

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


Sample Description: FINES, SAND Dispersion Method Shaker

<u>Test Method:</u> AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.63

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-013 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 36 (1.0-1.5)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

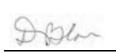
Particle Size (mm)	% Passing
2.36	100%
1.18	98%
0.600	91%
0.425	87%
0.300	84%
0.150	80%
0.075	70%
Particle Size (microns)	
46	60%
32	57%
23	56%
17	51%
12	46%
9	44%
6	43%
5	39%
1	33%

Median Particle Size (mm)* 0.016

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


Sample Description: FINES, SAND Dispersion Method Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.66

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

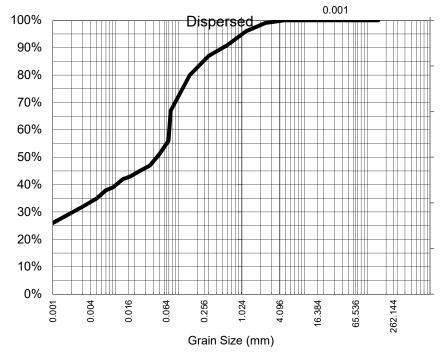
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-014 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay **SAMPLE ID**: OP2 33 (0-0.5)

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

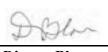
Particle Size (mm)	% Passing
4.75	100%
2.36	99%
1.18	96%
0.600	91%
0.425	89%
0.300	87%
0.150	80%
0.075	67%
Particle Size (microns)	
49	51%
35	47%
24	45%
17	43%
13	42%
9	39%
7	38%
5	35%
1	26%

Median Particle Size (mm)* 0.046

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


<u>Sample Description:</u> FINES, SAND <u>Dispersion Method</u> Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.64

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator
Authorised Signatory

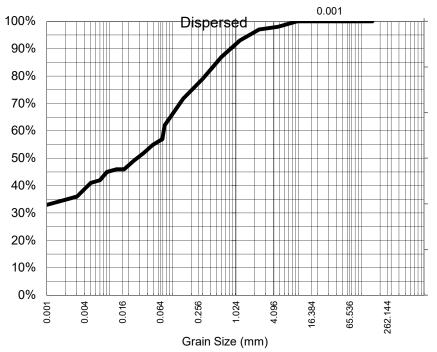
ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental Newcastle, NSW

CLIENT: Bill Boylson DATE REPORTED: 5-Dec-2018

COMPANY: ADVISIAN PTY LTD **DATE RECEIVED:** 22-Nov-2018

ADDRESS: LEVEL 3 REPORT NO: EB1828853-015 / PSD


60 ALBERT STREET

BRISBANE

PROJECT: 301001.02018 - Port Of Mackay SAMPLE ID:

Sediment Sampling

Particle Size Distribution

Analysis Notes

Samples analysed as received.

Particle Size (mm)	% Passing
Tartiolo Cizo (IIIII)	70 T G001119
9.50	100%
4.75	98%
2.36	97%
	** **
1.18	93%
0.600	87%
0.425	83%
0.300	79%
0.150	72%
0.075	62%
Particle Size (microns)	
49	55%
35	52%
24	49%
17	46%
13	46%
9	45%
7	42%
5	41%
1	33%

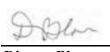
OP2 18 (0-0.5)

Median Particle Size (mm)* 0.028

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments: 30-Nov-18

<u>Loss on Pretreatment</u> NA <u>Limit of Reporting:</u> 1%


<u>Sample Description:</u> FINES, SAND <u>Dispersion Method</u> Shaker

Test Method: AS1289.3.6.2/AS1289.3.6.3

Soil Particle Density (<2.36mm) 2.63

NATA Accreditation: 825 Site: Newcastle
This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Dianne Blane
Laboratory Coordinator

Authorised Signatory

QUALITY CONTROL REPORT

Work Order : EB1828853

: ADVISIAN PTY LTD

Contact : MR BILL BOYLSON

Address : LEVEL 3 60 ALBERT STREET

BRISBANE QLD, AUSTRALIA 4000

Telephone : ---

Project : 301001.02018 - Port of Mackay Sediment Sampling

Order number

Client

C-O-C number : ---

Sampler : NICHOLAS BAINTON

Site

Quote number : BN/185/18

No. of samples received : 15

No. of samples analysed : 15

Page : 1 of 3

Laboratory : Environmental Division Brisbane

Contact : Caroline Hill

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61 7 3552 8662

Date Samples Received : 22-Nov-2018

Date Analysis Commenced : 05-Dec-2018

Issue Date : 06-Dec-2018

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dianne Blane Laboratory Coordinator (2IC) Newcastle - Inorganics, Mayfield West, NSW

Page : 2 of 3 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

No Laboratory Duplicate (DUP) Results are required to be reported.

Page : 3 of 3 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

• No Method Blank (MB) or Laboratory Control Spike (LCS) Results are required to be reported.

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EB1828853** Page : 1 of 6

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Telephone : +61 7 3552 8662

Project : 301001.02018 - Port of Mackay Sediment Sampling Date Samples Received : 22-Nov-2018

Site : Issue Date : 06-Dec-2018

Sampler : NICHOLAS BAINTON No. of samples received : 15
Order number : No. of samples analysed : 15

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 6 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

Matrix: SOIL			Evaluation: * = Holding time b					n nolaing tin
Method	Sample Date	Ex	traction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA150: Particle Sizing								
Snap Lock Bag (EA150H)								
SB_40,	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
SB_58								
Snap Lock Bag (EA150H)								
TB_05 (T1),	TB_12,	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
TB_26,	H-3							
Snap Lock Bag (EA150H)								
B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Snap Lock Bag (EA150H)								
OP2_36 (0-0.5),	OP2_36 (0.5-1.0),	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
OP2_36 (1.0-1.5),	OP2_33 (0-0.5)							
Soil Glass Jar - Unpreserved (EA150H)								
OP2_18 (0-0.5)		26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA150H)								
OP2_32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
EA150: Soil Classification based on Particle Siz	re							
Snap Lock Bag (EA150H)								
SB_40,	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
SB_58								
Snap Lock Bag (EA150H)								
TB_05 (T1),	TB_12,	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
TB_26,	H-3							
Snap Lock Bag (EA150H)								
B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Snap Lock Bag (EA150H)								
OP2_36 (0-0.5),	OP2_36 (0.5-1.0),	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
OP2_36 (1.0-1.5),	OP2_33 (0-0.5)							
Soil Glass Jar - Unpreserved (EA150H)	· · ·							
OP2_18 (0-0.5)		26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA150H)								
OP2_32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	✓

Page : 3 of 6
Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Matrix: SOIL				Evaluation	n: 🗴 = Holding time	e breach ; ✓ = With	in holding tim	
Method	Sample Date	Extraction / Preparation						
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA151: Settleability 10%								
Snap Lock Bag (EA151-10) SB_40, SB_58	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
Snap Lock Bag (EA151-10) TB_05 (T1), TB_26,	TB_12, H-3	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
Snap Lock Bag (EA151-10) B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	√
Snap Lock Bag (EA151-10) OP2_36 (0-0.5), OP2_36 (1.0-1.5)	OP2_36 (0.5-1.0),	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA151-10) OP2_18 (0-0.5)		26-Sep-2018				05-Dec-2018	25-Mar-2019	√
Soil Glass Jar - Unpreserved (EA151-10) OP2_32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
EA151: Settleability 20%								
Snap Lock Bag (EA151-20) SB_40, SB_58	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
= - Snap Lock Bag (EA151-20) TB_05 (T1), TB_26,	TB_12, H-3	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
Snap Lock Bag (EA151-20) B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	1
Snap Lock Bag (EA151-20) OP2_36 (0-0.5), OP2_36 (1.0-1.5)	OP2_36 (0.5-1.0),	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA151-20) OP2_18 (0-0.5)		26-Sep-2018				05-Dec-2018	25-Mar-2019	√
Soil Glass Jar - Unpreserved (EA151-20) OP2_32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	✓

Page : 4 of 6
Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	e breach ; ✓ = Withi	in holding tim
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA152: Soil Particle Density								
Snap Lock Bag (EA152)								
SB_40,	SB_50,	24-Sep-2018				05-Dec-2018	23-Mar-2019	✓
SB_58								
Snap Lock Bag (EA152)								
TB_05 (T1),	TB_12,	25-Sep-2018				05-Dec-2018	24-Mar-2019	✓
TB_26,	H-3							
Snap Lock Bag (EA152)								
B1_07,	B5_08	26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Snap Lock Bag (EA152)								
OP2_36 (0-0.5),	OP2_36 (0.5-1.0),	28-Sep-2018				05-Dec-2018	27-Mar-2019	✓
OP2_36 (1.0-1.5),	OP2_33 (0-0.5)							
Soil Glass Jar - Unpreserved (EA152)	· · ·							
OP2_18 (0-0.5)		26-Sep-2018				05-Dec-2018	25-Mar-2019	✓
Soil Glass Jar - Unpreserved (EA152)								
OP2 32 (0-0.5)		28-Sep-2018				05-Dec-2018	27-Mar-2019	1

Page : 5 of 6
Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Quality Control Parameter Frequency Compliance

No Quality Control data available for this section.

Page : 6 of 6 Work Order : EB1828853

Client : ADVISIAN PTY LTD

Project : 301001.02018 - Port of Mackay Sediment Sampling

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Settleability 10%	* EA151-10	SOIL	In house: Determination of the settling rate of sediment or sludge in 10% solids slurries in seawater
Settleability 20%	* EA151-20	SOIL	In house: Determination of the settling rate of sediment or sludge in 20% solids slurries in seawater
Soil Particle Density	* EA152	SOIL	Soil Particle Density by AS 1289.3.5.1-2006 : Methods of testing soils for engineering purposes - Soil
			classification tests - Determination of the soil particle density of a soil - Standard method

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EB1828853

Client : ADVISIAN PTY LTD Laboratory : Environmental Division Brisbane

Contact : MR BILL BOYLSON Contact : Caroline Hill

Address : LEVEL 3 60 ALBERT STREET Address : 2 Byth Street Stafford QLD Australia

4053

 Telephone
 : --- Telephone
 : +61 7 3552 8662

 Facsimile
 : --- Facsimile
 : +61-7-3243 7218

Project : 301001.02018 - Port of Mackay Page : 1 of 3

BRISBANE QLD, AUSTRALIA 4000

Sediment Sampling

 Order number
 : EB2018ADVISI0003 (BN/185/18)

 C-O-C number
 : NEPM 2013 B3 & ALS QC Standard

Site :

Sampler : NICHOLAS BAINTON

Dates

Date

Delivery Details

Mode of Delivery : Samples On Hand Security Seal : Not Available

No. of coolers/boxes : --- Temperature : <6.0°C

Receipt Detail : REBATCH No. of samples received / analysed : 15 / 15

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- This work order has been created to rebatch samples from EB1823470 & EB1823888.
- Discounted Package Prices apply only when specific ALS Group Codes ('W', 'S', 'NT' suites) are referenced on COCs.
- Analysis will be conducted by ALS Environmental, Newcastle, NATA accreditation no. 825, Site No. 1656.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Breaches in recommended extraction / analysis holding times (if any) are displayed overleaf in the Proactive Holding Time Report table.

: 26-Nov-2018 Issue Date

Page

: 2 of 3 : EB1828853 Amendment 0 Work Order Client : ADVISIAN PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determintasks, that are inclif no sampling default 00:00 on	may contain ad ation of moisture uded in the package. time is provided, the date of samplin sampling date widisplayed in bra	content and preparation the sampling time will g. If no sampling date	SOIL - EA150H Particle Size Analysis by Hydrometer: AS1289	SOIL - EA151-10 Settleability 10%	SOIL - EA151-20 Settleability 20%	SOIL - EA152 Soil Particle Density for Hydrometer Analysis
EB1828853-001	24-Sep-2018 00:00	SB_40	✓	✓	✓	✓
EB1828853-002	24-Sep-2018 00:00	SB_50	✓	✓	1	✓
EB1828853-003	24-Sep-2018 00:00	SB_58	✓	✓	✓	✓
EB1828853-004	26-Sep-2018 00:00	B1_07	✓	✓	✓	✓
EB1828853-005	26-Sep-2018 00:00	B5_08	✓	✓	1	✓
EB1828853-006	25-Sep-2018 00:00	TB_05 (T1)	✓	✓	1	✓
EB1828853-007	25-Sep-2018 00:00	TB_12	✓	✓	1	✓
EB1828853-008	25-Sep-2018 00:00	TB_26	✓	✓	✓	✓
EB1828853-009	25-Sep-2018 00:00	H-3	✓	✓	1	✓
EB1828853-010	28-Sep-2018 00:00	OP2_32 (0-0.5)	✓	✓	1	✓
EB1828853-011	28-Sep-2018 00:00	OP2_36 (0-0.5)	✓	✓	✓	✓
EB1828853-012	28-Sep-2018 00:00	OP2_36 (0.5-1.0)	✓	✓	1	✓
EB1828853-013	28-Sep-2018 00:00	OP2_36 (1.0-1.5)	✓	✓	✓	✓
EB1828853-014	28-Sep-2018 00:00	OP2_33 (0-0.5)	✓	✓	✓	✓
EB1828853-015	26-Sep-2018 00:00	OP2_18 (0-0.5)	✓	✓	1	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 26-Nov-2018

Page : 3 of 3
Work Order : EB1828853 Amendment 0
Client : ADVISIAN PTY LTD

Requested Deliverables

Λ1		KO	\sim	NII	EFF
AL	^	NU	СΠ	IVI	ЕГГ

- *AU Certificate of Analysis - NATA (COA)	Email	alex.kochnieff@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	alex.kochnieff@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	alex.kochnieff@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	alex.kochnieff@advisian.com
- Attachment - Report (SUBCO)	Email	alex.kochnieff@advisian.com
- Chain of Custody (CoC) (COC)	Email	alex.kochnieff@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	alex.kochnieff@advisian.com
- EDI Format - XTab (XTAB)	Email	alex.kochnieff@advisian.com

BILL BOYLSON

- *AU Certificate of Analysis - NATA (COA)	Email	bill.boylson@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	bill.boylson@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	bill.boylson@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bill.boylson@advisian.com
- A4 - AU Tax Invoice (INV)	Email	bill.boylson@advisian.com
- Attachment - Report (SUBCO)	Email	bill.boylson@advisian.com
- Chain of Custody (CoC) (COC)	Email	bill.boylson@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	bill.boylson@advisian.com
- EDI Format - XTab (XTAB)	Email	bill.boylson@advisian.com
NICHOLAS BAINTON		

- *AU Certificate of Analysis - NATA (COA)	Email	nicholas.bainton@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	nicholas.bainton@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	nicholas.bainton@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nicholas.bainton@advisian.com
- Attachment - Report (SUBCO)	Email	nicholas.bainton@advisian.com
- Chain of Custody (CoC) (COC)	Email	nicholas.bainton@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	nicholas.bainton@advisian.com
- EDI Format - XTab (XTAB)	Email	nicholas.bainton@advisian.com

STEPHEN NEALE

- *AU Certificate of Analysis - NATA (COA)	Email	stephen.neale@advisian.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	stephen.neale@advisian.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	stephen.neale@advisian.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	stephen.neale@advisian.com
- Attachment - Report (SUBCO)	Email	stephen.neale@advisian.com
- Chain of Custody (CoC) (COC)	Email	stephen.neale@advisian.com
- EDI Format - ENMRG (ENMRG)	Email	stephen.neale@advisian.com
- EDI Format - XTab (XTAB)	Email	stephen.neale@advisian.com

From: Kochnieff, Alex (Brisbane) [mailto:ALEX.KOCHNIEFF@advisian.com]

Sent: Thursday, 22 November 2018 1:06 PM To: Caroline Hill < caroline.hill@ALSGlobal.com>

Subject: EB1823470, EB1823888

Good afternoon Caroline,

As discussed, we require additional PSD and settling rate analysis on the following samples:

	Workorder	korder # Volume Remaining				Advisian Sample	
			250mL Soil Jar	ASS Bag	Porewater Bag	Units	
1	EB1823470	5	1	1 1	an and a second and a second	LOR	
2	EB1823470	7	2	2		SB_40	
3	EB1823470	9	2.5	1	<u></u>	SB_50	
4	EB1823470	16	1	2		SB_58	
5	EB1823470	19	1,5	1		B1_07 B5_08	
6	EB1823470	24	1.75	2		TB_05 (T1)	
7	EB1823470	27	1.75	2	1	TB_12	
ଞ୍ଚା	EB1823470	29	2.75	3	1	TB 26	
	EB1823470	35	0.5			REF 03	
9	EB1823470	39	3.5	2		H-3	
10	EB1823888	9	2-3	Maybe 1	Unknown	OP2_32 (0-0.5)	
1!	EB1823888	13	2-3	Maybe 2	Unknown	OP2_36 (0-0.5)	
12	EB1823888	14	2-3	Maybe 2	Unknown	OP2_36 (0.5-1.0)	
13	EB1823888	15	2-3	Maybe 2	Unknown	OP2_36 (0.3-1.0) OP2_36 (1.0-1.5)	
14	EB1823888	16	2	1	Unknown	OP2_33 (0-0.5)	
15	EB1823888	19	3	Maybe 1	Unknown	OP2_18 (0-0.5)	

Please let me know if this is possible.

Kind regards,

Alex Kochnieff

Senior Environmental Engineer

Level 31, 12 Creek St | Brisbane City, QLD 4000 P +61 7 3319 3940 | M +61 468 660 301

E alex.kochnieff@advisian.com

www.advisian.com | Follow Advisian

Environmental Division

Brisbane

CERTIFICATE OF ANALYSIS

Work Order : EB1825261

Client : TRILAB PTY LTD

Contact : THE ADMIN RESULTS

Address : 346A BILSEN RD

GEEBUNG QLD, AUSTRALIA 4031

Telephone : +61 07 3265 5656
Project : 301001-02095
Order number : BNE 1910012

 C-O-C number
 : ---

 Sampler
 : ---

 Site
 : ---

 Quote number
 : EN/333

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 4

Laboratory : Environmental Division Brisbane

Contact : Customer Services EB

Address : 2 Byth Street Stafford QLD Australia 4053

Telephone : +61-7-3243 7222
Date Samples Received : 18-Oct-2018 14:35

Date Analysis Commenced : 25-Oct-2018

Issue Date : 26-Oct-2018 08:29

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Kim McCabe Senior Inorganic Chemist Brisbane Inorganics, Stafford, QLD

Page : 2 of 4
Work Order : EB1825261

Client : TRILAB PTY LTD
Project : 301001-02095

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 4
Work Order : EB1825261

 Client
 : TRILAB PTY LTD

 Project
 : 301001-02095

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID		18100443 / OP2_18 / 0.50m	18100444 / OP2_24 / 0.50m	18100445 / TB-05 / 0.50m	18100446 / SB_45 / 0.50m	18100447 / B1_07 / 0.50m	
	Client sampling date / time				18-Oct-2018 00:00	18-Oct-2018 00:00	18-Oct-2018 00:00	18-Oct-2018 00:00
Compound	CAS Number	LOR	Unit	EB1825261-001	EB1825261-002	EB1825261-003	EB1825261-004	EB1825261-005
				Result	Result	Result	Result	Result
EP004: Organic Matter								
Organic Matter		0.5	%	1.0	1.8	5.9	1.2	4.6
Total Organic Carbon		0.5	%	0.6	1.0	3.4	0.7	2.6

Page : 4 of 4
Work Order : EB1825261

 Client
 : TRILAB PTY LTD

 Project
 : 301001-02095

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			18100448/ B4_01 / 0.50m	18100449 / B5_10 / 0.50m	18100450 / B3_14 / 0.50m	
Client sampling date / time				18-Oct-2018 00:00	18-Oct-2018 00:00	18-Oct-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1825261-006	EB1825261-007	EB1825261-008	
				Result	Result	Result	
EP004: Organic Matter							
Organic Matter		0.5	%	3.9	3.3	4.2	
Total Organic Carbon		0.5	%	2.2	1.9	2.4	

CERTIFICATE OF ANALYSIS

Issue Date

· 20-Nov-2018 15:33

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : EB1825261 Page : 1 of 4

Amendment : 1

Client : TRILAB PTY LTD Laboratory : Environmental Division Brisbane

Contact : THE ADMIN RESULTS Contact : Customer Services EB

Address : 346A BILSEN RD Address : 2 Byth Street Stafford QLD Australia 4053

GEEBUNG QLD, AUSTRALIA 4031

 Telephone
 : +61 07 3265 5656
 Telephone
 : +61-7-3243 7222

 Project
 : 301001-02095
 Date Samples Received
 : 18-Oct-2018 14:35

Order number : BNE 1910012 Date Analysis Commenced : 25-Oct-2018

C-O-C number : ---Sampler : ---Site : ----

Quote number : EN/333

No. of samples received : 8

No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Page : 2 of 4

 Work Order
 : EB1825261 Amendment 1

 Client
 : TRILAB PTY LTD

 Project
 : 301001-02095

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Amendment (20/11/2018): This report has been amended and re-released to allow the reporting of additional analytical data, specifically ANC.
- ASS: EA013 (ANC) Fizz Rating: 0- None; 1- Slight; 2- Moderate; 3- Strong; 4- Very Strong; 5- Lime.

Page

: 3 of 4 : EB1825261 Amendment 1 Work Order : TRILAB PTY LTD Client 301001-02095 Project

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	18100443 / OP2_18 / 0.50m	18100444 / OP2_24 / 0.50m	18100445 / TB-05 / 0.50m	18100446 / SB_45 / 0.50m	18100447 / B1_07 / 0.50m
	CI	lient sampli	ing date / time	18-Oct-2018 00:00	18-Oct-2018 00:00	18-Oct-2018 00:00	18-Oct-2018 00:00	18-Oct-2018 00:00
Compound	CAS Number	LOR	Unit	EB1825261-001	EB1825261-002	EB1825261-003	EB1825261-004	EB1825261-005
				Result	Result	Result	Result	Result
EA013: Acid Neutralising Capacity								
ANC as H2SO4		0.5	kg H2SO4	57.2	86.2	69.5	96.8	96.2
			equiv./t					
ANC as CaCO3		0.1	% CaCO3	5.8	8.8	7.1	9.9	9.8
Fizz Rating		0	Fizz Unit	2	2	2	2	2

Page

: 4 of 4 : EB1825261 Amendment 1 Work Order : TRILAB PTY LTD Client 301001-02095 Project

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	18100448/ B4_01 / 0.50m	18100449 / B5_10 / 0.50m	18100450 / B3_14 / 0.50m	
	CI	lient sampli	ng date / time	18-Oct-2018 00:00	18-Oct-2018 00:00	18-Oct-2018 00:00	
Compound	CAS Number	LOR	Unit	EB1825261-006	EB1825261-007	EB1825261-008	
				Result	Result	Result	
EA013: Acid Neutralising Capacity							
ANC as H2SO4		0.5	kg H2SO4	98.6	99.9	102	
			equiv./t				
ANC as CaCO3		0.1	% CaCO3	10.0	10.2	10.4	
Fizz Rating		0	Fizz Unit	2	2	2	

CERTIFICATE OF ANALYSIS

Work Order : EB1826671

Client : TRILAB PTY LTD

Contact : MR CHRIS CHANNON

Address : 346A BILSEN RD

GEEBUNG QLD, AUSTRALIA 4031

Telephone : +61 07 3265 5656
Project : 301001-02095
Order number : BNE 1911004

C-O-C number : ---Sampler : ---Site : ---Quote number : EN/333

No. of samples received : 2

No. of samples analysed : 2

Page : 1 of 2

Laboratory : Environmental Division Brisbane

Contact : Customer Services EB

Address : 2 Byth Street Stafford QLD Australia 4053

 Telephone
 : +61-7-3243 7222

 Date Samples Received
 : 02-Nov-2018 11:20

 Date Analysis Commenced
 : 07-Nov-2018

Issue Date : 08-Nov-2018 15:08

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Page : 2 of 2 Work Order : EB1826671

Client : TRILAB PTY LTD
Project : 301001-02095

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ASS: EA013 (ANC) Fizz Rating: 0- None; 1- Slight; 2- Moderate; 3- Strong; 4- Very Strong; 5- Lime.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	18110001 / SB_16 / 0.50m	18110002 / SB40 / 0.50m	 	
	CI	lient sampli	ng date / time	02-Nov-2018 00:00	02-Nov-2018 00:00	 	
Compound	CAS Number	LOR	Unit	EB1826671-001	EB1826671-002	 	
				Result	Result	 	
EA013: Acid Neutralising Capacity							
ANC as H2SO4		0.5	kg H2SO4	73.4	79.8	 	
			equiv./t				
ANC as CaCO3		0.1	% CaCO3	7.5	8.1	 	
Fizz Rating		0	Fizz Unit	2	2	 	

North Queensland Bulk Ports Marine Sediment Properties Report

Appendix D Trilab laboratory documentation

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Advisian I	Pty Ltd	Test Method: AS 1289 3.6.3	Report No.	18100443-G
				Workorder No.	0005017
Address	Level 31,	Blue Tow	er, 12 Creek Street	Test Date	16/10/18-30/10/18
	BRISBAN			Report Date	30/10/2018
Project	301001-0	2095 - Po	t of Mackay	Nopoli Date	30/10/2010
Client ID	OP2_18			Depth (m)	0.50
Sieve Size	Passing			Dopan (III)	0.00
(mm)	%	100			
150.0					
75.0					
63.0		90			 /
53.0					XI
37.5		_			
26.5		80			
19.0					
13.2		76			
9.5		70			
6.7	100				
4.75	99	60			
2.36	95				
1.18	91	") Bu			
0.600	82	Passing (%)			
0.425	77	т.			
0.300	73				
0.150	63	40			
0.075	52				
0.067	50				
0.048	45	30			
0.034	44				
0.024	43				
0.018	38	20			+++++++
0.013	38				
0.0093	35				
0.0066	33	10			
0.0047	31				
0.0038	28				
0.0033	28	0 0.	01 0.01	0.1	1 10
0.0027	27			Particle Size (mm)	
0.0024	26			, ,	
0.0014	23				

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

evel 31, Bli BRISBANE 01001-020 DP2_24 Passing %	QLD 4	1000			ree	t				Rep Wor Tes Rep	kor t Da	der ate Da	No. te	16	0501 /10/ /10/2	18-3		10/1
01001-020 0P2_24 Passing	QLD 4 95 - Po 100 -	1000			ree	t				Tes Rep	t Da	ate Da	te	16 30	/10/ /10/:	18-3		10/1
01001-020 0P2_24 Passing	95 - Po 100 - 90 -		acka	y						Rep	ort	Da		30	/10/:			
P2_24 Passing	100 - 90 -	rt of M	acka	у												201		
P2_24 Passing	100 - 90 -									D	eptl	h (n	1)	0.5	50			
assing	90 -										cpu	'' (''	'/	0.0	,,,			
_	90 -																	
											П	П	Τ		_	_	+	ПП
													<u> </u>					
													/					
	80 -					H						+	\not				+	++
	80 -	l										1/						
	80 -																	
					$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$				1	\dagger				\top	#	1
	70									/								
	70 -																\prod	\prod
								/										
	60 -				Ш		Ш	/									Ш	Ш
	ng (%						1											
100	assir 50 -				$\downarrow \downarrow$	4	Щ				$\perp \! \! \perp$					\perp	$\perp \! \! \perp$	Ш
99	Δ.				11													
99				/														
96	40 -				+	+	+				+					+	$+\!\!\!+$	++
84																		
81																		
79	30 -				+	+	+				++	+			+	+	+	++
72																		
66																		
63	20 -				+	+	+				+					+	+	++
59																		
55																		
50	10 -				$\dagger \dagger$	$\dagger \dagger$	$\dagger \dagger$				+	\dagger				\top	#	$\dagger \dagger \dagger$
48																		
46	•																	
44		001					0.0	1					0.1					
42								Parti	cle Si	ze (m	m)							
41										•	•							
38																		
	99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 42 41 38	100 99 99 96 40 - 40 - 84 81 79 72 66 63 59 55 50 48 46 44 44 0.0	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 40 0.0001	100 99 99 96 84 81 79 72 66 63 59 55 50 48 44 44 44 44 44 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 42 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 42 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 42 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 44 44 44 44 44 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 44 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 42 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 44 46 44 42 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 42 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 44 46 44 42 41	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 42 41 Particle Size (mm)	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 42 41 Particle Size (mm)	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 42 41 Particle Size (mm)	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 42 41 Particle Size (mm)	100 99 99 96 84 81 79 72 66 63 59 55 50 48 46 44 44 42 41 Particle Size (mm)

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Advisian F	Pty Ltd			hod:		•					Repo	rt No	ο.	_	181	004	45-	G		
												Work) .		5017				
Address	Level 31, l	Blue Tow	er, 12 (Cree	ek S	tre	et					Test					10/1		0/1	0/1	8
	BRISBAN											Repo					10/2			O, .	Ŭ
Project	301001-02	2095 - Po	rt of M	acks	av							ixepo	יונטפ	ate		30/	10/2	.010	'		
Client ID	TB_05	2000 - 1 0	I COI IVIO	acite	ч							Dor	oth (m)		0.5	n				
Sieve Size	Passing										<u> </u>	Del	י) וואל	111)		0.5	0				
(mm)	%	100				П			_	П	П				П		_		П	П	П
150.0	70														H	1					
75.0														11							
63.0		90							+	H	+		\leftarrow	++	Н				+	Ш	\parallel
53.0																					
37.5		_									W	1									
26.5		80			\Box	\parallel		\Box	\nearrow		$\parallel \parallel$			$\dagger \dagger$	$\parallel \parallel$				$\dagger \dagger$	$\parallel \parallel$	1
19.0																					
13.2		70																			
9.5		70						/							Ш					Ш	
6.7							/														
4.75		60			Ш	Ш					Ш			Ш	Ш					Ш	
2.36	100						1														
1.18	99	9) Bu			$ \rangle$																
0.600	97	Passing (%)			M	Щ				Ш	Щ			\coprod	Щ	1			Щ	Щ	
0.425	95	a			1																
0.300	93		,	᠕																	
0.150	88	40				Н	1		+	H	\coprod			+	$\parallel \parallel$	-		+	+	$\parallel \parallel$	\parallel
0.075	81																				
0.062	81																				
0.044	79	30			H	\mathbb{H}		\vdash	+	\mathbf{H}	\mathbb{H}			+	₩	-		+	+	\mathbb{H}	\mathbb{H}
0.032	75																				
0.023	71																				
0.017	64	20		+	H	H		\vdash		H	\mathbb{H}			+	H	\parallel	+	+	+	\mathbb{H}	H
0.012	61																				
0.0089	58																				
0.0063	54	10				$\parallel \parallel$		\vdash	$^{+}$	\dagger	††			$\dagger\dagger$	$\parallel \parallel$	\parallel		+	$\dagger \dagger$	$\parallel \parallel$	\mathbb{H}
0.0045	51																				
0.0037	48	-																			
0.0032	47	0 0.0	001			0	.01				0).1				1	-		- 1 - 1		⊣ 10
0.0026	43								Par	ticle	Siz	ze (mm)									
0.0023	43											- ,)									
0.0013	38																				

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Advisian F	Pty Ltd		Method						Repo	rt No). 	181	0044	16-G		
										Work	<u>orde</u> r	No.	000	5017			
Address	Level 31,			Creek	Stre	et				Test	Date		16/	10/18	3-30/	10/1	18
	BRISBAN	E QLD 4	1000							Repo	rt Da	ate	30/	10/20)18		
Project	301001-0	2095 - Po	rt of Ma	ackay													
Client ID	SB_45									Dei	oth (ı	n)	0.5	0			
Sieve Size	Passing								1		•						
(mm)	%	100 -							ПП							+	П
150.0																	
75.0																	
63.0		90 -							Ш			Ш,	H			$^{++}$	Ħ
53.0												$ \cdot / $					
37.5		22										/					
26.5		80 -						Ш	$\parallel \parallel$			$/\!\!\!/\!\!\!/$				$\parallel \parallel$	П
19.0											/	1					
13.2		70 -							Ш							Ш	
9.5		70															
6.7	100										/						
4.75	99	60 -			Щ			Ш	Ш			Ш			Ш	Ш	
2.36	98										/						
1.18	94	ng (°								/							
0.600	86	Passing (%)		$\perp \perp \downarrow$	$\parallel \parallel \parallel$				Щ	/				\perp		\coprod	Ц
0.425	78	<u> </u>								/							
0.300	71																
0.150	47	40 -		++	+ + + +	-			+	$\vdash\!$				+		++	H
0.075	22									/							
0.072	19									/							
0.051	16	30 -		++	+ + +	-		\square	+			+++		+	\vdash	++	H
0.036	15																
0.026	12																
0.019	12	20 -		++	+ + + +	+		H	#					+	H	+++	H
0.014	12							H									
0.0097	10						+										
0.0069	9	10 -		$+ \downarrow \downarrow$	#			Н	$\parallel \parallel$				$\parallel \parallel =$	+		+++	\dagger
0.0049	8			$\top $													
0.004	8																
0.0035	7	0 - 0.0	001		0	.01		. 1	0	.1			1				∐ 10
0.0028	7						P	artic	le Si:	ze (mm)	ı						
0.0024	7									. ()							
0.0014	7																
TES/REMARKS		loisture Cor											2.61				

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Passing (%)	_D 40	000			Stro	eet					Т	Jork est epo	Dat ort E	e Date	9	,	000	10/ 10/2	18-		10/	/18
001-02095 - 07 -sing %	Por 100 - 90 - 80 - 70 - 60 - 60 - 60 - 60 - 60 - 60 - 6	000			Stro	eet						еро	rt C	Date			30/	10/2			10/	/18
001-02095 - 07 sing % 00 09 09 09 09 09	90		lack	ay							R								201	8		
07 ssing % 00 00 99 99	90 -	t of M	lack	ay																		
07 ssing % 00 00 99 99	90 -											Dep	oth	(m)			0.50	0				
Fsing % 00 00 00 00 00 00 00 00 00 00 00 00 0	90 -																					
Passing (%)	90 -																					
99	80 - 70 - 60 -																					
99	80 - 70 - 60 -																					
99	80 - 70 - 60 -																					
99	70 -																					
99	70 -				/																	
99	70 -																					
99	60 -				/																	Ш
99	60 -																				11	
99	60 -																					
99																						
99														+								
99															\perp							
99	50 -		4								111											
99	50 -	$\overline{}$																				
99					\vdash						Ш				Ш	Ш				Ш		Ш
7		/																				
97	40										Ш					Ш						Ш
96																						
90																						
38	30						+				₩			+		Н		_	-	+	+	Н
35																						
32																						
79	20			+ + +	\mathbb{H}	-	+	+	\vdash	+	₩		\vdash	+	\mathbb{H}	\mathbb{H}		+	+	+	+	\mathbb{H}
76																						
72																						
67	10				H		+	+	\vdash	+	₩			+	\forall	#		+	+	+	+	\mathbb{H}
63																						
59																						
58	0.00	D1			اللا	↓ 0.01					0.1				Ш	ш.	1					Щ 10
55	2.30								arti -	ole '												
54								Ρ:	artiC	cie (312 0	(mm)	'									
14																						
	15 12 19 16 16 17 13 19 18 18 15 15 14 14	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	20 20 20 20 20 21 22 33 39 38 0.001	20 20 20 20 20 20 21 21 23 33 39 38 30 30 34 44	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 21 20 21 20 21 21 23 33 39 38 39 38 35 44 44	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	20 20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Advisian F	Pty Ltd				Report No.	18100448-	G
						Workorder No.	0005017	
Address			12 Creek Stre	eet		Test Date	16/10/18-3	0/10/18
	BRISBAN	E QLD 400)()			Report Date	30/10/2018	3
Project	301001-02	2095 - Port	of Mackay					
Client ID	B4_01					Depth (m)	0.50	
Sieve Size	Passing							
(mm)	%	100						
150.0								
75.0								
63.0		90						
53.0				$\parallel \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
37.5		80 -						
26.5		ου †						
19.0				V				
13.2		70	//					
9.5		.•						
6.7								
4.75		60	\perp					
2.36								
1.18	100	ng (°	$ \cdot $					
0.600	99	Passing (%)						
0.425	99	<u> </u>						
0.300	98							
0.150	97	40						+++++
0.075	95							
0.058	93							
0.042	91	30			+ + + + + + + + + + + + + + + + + + +			+
0.03	89							
0.021	86							
0.016	83	20						++++++++++++++++++++++++++++++++++++
0.012	79							
0.0084	73							
0.006	68	10	- 					+++++
0.0043	63							
0.0035	61							
0.0031	60	0 0.001).01	<u> </u>		1	 10
0.0025	57	0.001	`				•	10
0.0022	55			F	Particle Si	ze (mm)		
	50							

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Advisian F	Pty Ltd					1289 3	1				Repo	rt N	0.		18	100)449	9-G		
												Work			э.		050				
Address	Level 31,	Blue Tow	er, 12 C	ree	k St	tre	et					Test			-			 /18-	30/	10/	118
	BRISBAN											Repo						/201		. 51	
Project	301001-0	2095 - Po	rt of Ma	ncka	ıV							Kepe		atc		- 50	1101	20	10		
Client ID	B5_10	2000 10	it of ivio	iono	·y							Dei	oth (m)		0.5	50				
Sieve Size	Passing											<u> </u>	J 111 (,		0.0	-				
(mm)	%	100				П			Т	П	П			-	+	H			П	П	П
150.0																					
75.0										Ш	$\ \ $										
63.0		90				$^+$			+	\forall	+			+	+				+	$^{+}$	Н
53.0																					
37.5																					
26.5		80		$\dagger \dagger$	$\dagger \dagger$	\dagger	1			\dagger	$\dagger \dagger$			$\dagger \dagger$	$\dagger \dagger$				+	$\dagger \dagger$	Ħ
19.0							/														
13.2		70					/														
9.5		70 -			T	1								\parallel	\parallel					\parallel	П
6.7																					
4.75		60		$\perp \downarrow$	$/ \square$						Ш			Ш						\coprod	Ш
2.36				I																	
1.18	100	9) Bu		4																	
0.600	99	Passing (%)				Ш					Щ									1	Щ
0.425	99	Δ.																			
0.300	99																				
0.150	99	40									\perp									\perp	
0.075	97																				
0.061	89																				
0.043	85	30		+		$^{+}$			+	+	$^{+}$			++	+		\dashv		+	$^{+}$	Н
0.031	82																				
0.022	81																				
0.016	80	20		+	+	+	+		+	+	+			+	+			-	+	+	\mathbb{H}
0.012	74																				
0.0086	70																				
0.0061	67	10		+	+	+			+	$\dagger \dagger$	+			+	$\dagger \dagger$				+	+	H
0.0044	62																				
0.0036	59	-																			
0.0031	57	0 0.0	001			0	.01				(0.1			1 1	1					1
0.0026	54								Pai	rticl	e Si	ize (mm)									
0.0022	53								. u		. •	()									
0.0013	46																				

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Client	Advisian F	Pty Ltd						3.6.3, 3.5 <u>.</u>		Rep	ort	No.		1810	0450)-G	
										-		ler No). (0050)17		
Address	Level 31,	Blue Tow	er, 12	Cree	k St	reet				Tes				16/10		30/	10/1
	BRISBAN											Date		30/10			. 0, .
Project	301001-02	2005 Do	rt of M	aaka	.,					Kep	OIL	Date		JU/ 10	1/20	10	
Client ID		2093 - FC	of t Of IVI	auna	у						neth	(m)		0.50			
Sieve Size	B3_14 Passing									De	epui	(m)		J.5U			
(mm)	%	100	1													$\overline{}$	
150.0	/0																
75.0												/					
63.0		90	-			++	H				\mathcal{A}					+	+++
53.0									/								
37.5																	
26.5		80				++	+	+	<u>'</u>							++	+++
19.0																	
13.2							/										
9.5		70	1			+	+			+		+++				++	+++
6.7						1											
4.75																	
2.36		60	1			$\dagger \dagger$	\dagger			\dagger	+				\vdash	#	$\dagger \dagger \dagger$
1.18		%) B		/													
0.600	100	Passing (%)															
0.425	99	se 50															
0.300	99		/														
0.150	98	40															
0.075	96	40															
0.057	90																
0.041	89	30	<u> </u>			$\perp \! \! \perp$	Ш					Ш				$\perp \! \! \perp$	Ш
0.029	87																
0.021	84																
0.016	79	20				\perp	\sqcup							-		+	++
0.011	76																
0.0082	73																
0.0059	69	10	-			+	+			\vdash				+		$+\!\!\!+$	+++
0.0042	65																
0.0035	63																
0.003	60	0	001				Щ,).01				0.4					
0.0025	55	U.	UU I				(_		0.1					
0.0022	53							Par	ticle S	ize (mr	n)						
0.0013	33																
																	
OTES/REMARKS	ş. <u>-</u>																

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	ATTERBERG LIMITS TE Test Method: AS 1289 2.1.1, 3.1.1, 3.1.2		
Client	Advisian Pty Ltd	Report No.	18100443-AL
		Workorder No.	0005017
Address	Level 31, Blue Tower, 12 Creek Street BRISBANE QLD 4000	Report Date	01/11/2018
Project	301001-02095 - Port of Mackay		

Sample No.	18100443	18100444	18100445	18100446	18100447	18100448
Test Date	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018	27/10/2018
Client ID	OP2_18	OP2_24	TB_05	SB_45	B1_07	B4_01
Depth (m)	0.50	0.50	0.50	0.50	0.50	0.50
Liquid Limit (%)	45	83	83	Not Obtainable	128	119
Plastic Limit (%)	17	29	32	Not Obtainable	37	35
Plasticity Index (%)	28	54	51	Non Plastic	91	84
Linear Shrinkage (%)	11.0 +	18.5 *	15.5 +	Not Obtainable	26.5 +	22.0 +
Moisture Content (%)	63.9	131.0	125.5	28.0	176.0	186.6

Sample No.	18100449	18100450		
Test Date	27/10/2018	27/10/2018		
Client ID	B5_10	B3_14		
Depth (m)	0.50	0.50		
Liquid Limit (%)	125	119		
Plastic Limit (%)	38	37		
Plasticity Index (%)	87	82		
Linear Shrinkage (%)	23.5 +	23.0 +		
Moisture Content (%)	164.0	191.2		

NOTES/REMARKS: The samples were tested in a natural state, wet sieved and in a 125-250mm mould.

Sample/s supplied by the client * Cracking occurred + Curling occurred Page 1 of 1 REP00102

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory

a

Tested at Trilab Brisbane Laboratory.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

Worley Pa	rsons Pty Ltd				18110001-AL
-	-			-	
Level 7, 25 6000	50 St George'	s Terrace PERT	H WA	Report Date	08/11/2018
301001-02	2095				
	18110001	18110002			
	2/11/2018	2/11/2018			
	SB_16	SB40			
	0.50	0.50			
t (%)	140	118			
t (%)	34	31			
dex (%)	106	87			
nkage (%)	26.5 +	24.0 +			
ontent (%)	198.9	167.1			
	<u> </u>				
t (%)					
t (%)					
dex (%)					
nkage (%)					
ontent (%)					
	Level 7, 29 6000 301001-02 it (%) it (%) mkage (%) mhage (%) mtent (%) it (%) dex (%)	Test Method: Worley Parsons Pty Ltd Level 7, 250 St George' 6000 301001-02095 18110001 2/11/2018 SB_16 0.50 t (%) 140 t (%) 34 dex (%) 106 nkage (%) 26.5 + ontent (%) 198.9	Level 7, 250 St George's Terrace PERTI 6000 301001-02095 18110001 18110002 2/11/2018 2/11/2018 SB_16 SB40 0.50 0.50 140 118 118 14 (%) 34 31 31 4 (%) 106 87 164 (%) 198.9 167.1 167.1 167.1 168 (%) 167.1 168 (%) 167.1 168 (%) 167.1 168 (%) 167.1 168 (%) 168	Level 7, 250 St George's Terrace PERTH WA 6000 301001-02095 18110001 18110002 2/11/2018 2/11/2018 SB_16 SB40 0.50 0.50 (%) 140 118	Level 7, 250 St George's Terrace PERTH WA 6000 301001-02095 18110001 18110002

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Authorised Signatory

ACCREDITED FOR TECHNICAL

Tested at Trilab Brisbane Laboratory.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		SOIL		LE DENS	SITY TES	T REPO	RT		
CI	ient	Worley Pars	sons Pty Ltd	COLINGING. AC	3 1200 0.0.1	Report N	lo.	18110001-	SG
						Workord	ler No.	0005080	
Ad	ddress	Level 7, 250 6000) St George's	s Terrace Pl	ERTH WA	Report D	Date	08/11/2018	3
Pr	oject	301001-020	95						
	Sample No.	18110001	18110002						
	Test Date	6/11/2018	6/11/2018						
	Client ID	SB_16	SB40	-	-	-	-	-	
	Depth (m)	0.50	0.50	-	-	-	-	-	
	Soil Particle Density (t/m³) (-2.36mm)	2.57	2.55						
	Soil Particle Density (t/m³) (+2.36mm)	-	-						
	Total Soil Particle Density (t/m³)	2.57	2.55						
	Sample No.								٦
									4
	Test Date								-
	Client ID	-	-	-	-	-	-	-	
	Depth (m)	-	-	ı	-	-	1	-	
	Soil Particle Density (t/m³) (-2.36mm)								
	Soil Particle Density (t/m³) (+2.36mm)								
	Total Soil Particle Density (t/m³)								
NOTE	ES/REMARKS:								
		Sample/s supp	olied by the clie	ent				Page 1 of 1	REP04603
			-					-	

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

YES

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

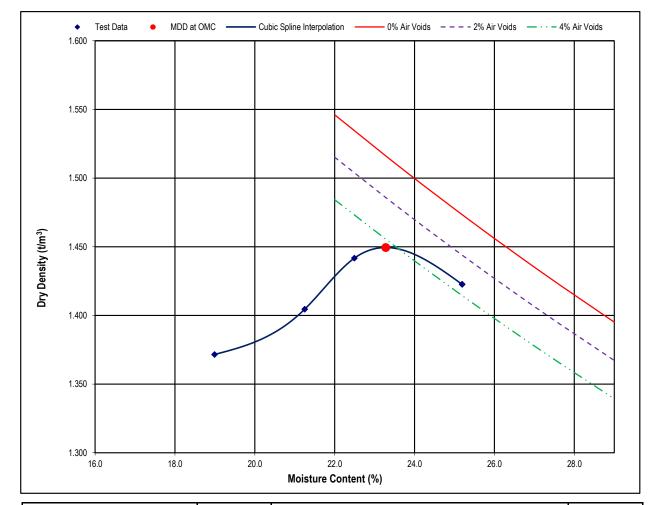
MINIMUM AND MAXIMUM DRY DENSITY OF A COHESIONLESS MATERIAL TEST REPORT Test Method AS 1289.5.5.1 / Q142E Worley Parsons Pty Ltd Client 18110383-MM Report No. Workorder No. 0005139 Address Level 7, 250 St George's Terrace PERTH WA **Test Date** 15/11/2018 **Report Date** 22/11/2018 **Project** 301001-02095 Description Sample No. 18110383 **Client ID** SB 45 Depth (m) **TEST RESULTS** Nominal Size of Mould Used (cm³) 1002 Field Moisture Content (%) 28.7 Minimum Dry Density (t/m³) 1.14 1.62 Maximum Dry Density (t/m³) **Maximum Dry Density Moisture Content (%)** 24.1 Notes/Remarks: Sample/s supplied by client Page: 1 of 1 REP013601

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory


NATA ACARDITED TO TECHNICAL COMPETENCE

Tested at Trilab Brisbane Laboratory.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	MOISTURE/DENSITY RELATIONSHIP TEST REPORT								
Test Method: AS 1289 5.1.1 & AS 1289.2.1.1									
Client	Worley Parsons Pty Ltd	Report No.	18110381-MDD						
		Workorder No.	0005139						
Address	Level 7, 250 St George's Terrace PERTH WA	Test Date	15/11/2018						
	6000	Report Date	16/11/2018						
Project	301001-02095								
Client ID	Client ID B1_07/B3_14/B4_01/B5_10 - Combined Depth (m) -								

Maximum Dry Density (t/m³)	1.45	Optimum Moisture Content (%)	23.3
Moisture Content (%)	138.7	Percentage of Oversize/Sieve Size (mm)	0/19

NOTES/REMARKS:

Sample/s supplied by the client

% Voids based on assumed SG of 2.34

Page 1 of 1

REP01304

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory

NATA

Tested at Trilab Brisbane Laboratory.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

		DIRECT S Test Method: AS 1			K.H. Head Vol. 2		
Client	Worley Parsons	s Pty Ltd			Report No.	18110383- DS	S
					Workorder No	0005139	
Address	Level 7, 250 St 6000	George's Terr	ace PERTH	WA	Test Date	21/11/2018	
					Report Date	26/11/2018	
Project	301001-02095						
Client ID	SB_45			0	Depth (m) ole Type Single indi	- vidual soil specime	<u></u>
escription	n SAND - grey			Samp	Remoulde as per clie	d at 70% of MDD a	and at
	<u>Verti</u>	cal Displacen	nent/Relative	Displac	cement Plot		
-0.05 -0.05 -0.1 -0.15 -0.2 -0.25						100 kl	Ра —
-0.05 -0.1						-	
-0.15		_					
-0.2							
-0.25							
0	1 2	3	4 5	6		8 9	10
0	1 2		4 5 ative Displacer			8 9	10
0	1 2	Rela		ment (mm))	8 9	10
0	1 2	Rela	ative Displacer	ment (mm))		10
0	1 2	Rela	ative Displacer	ment (mm))	8 9	10
80	1 2	Rela	ative Displacer	ment (mm))		10
70	1 2	Rela	ative Displacer	ment (mm))		10
70	1 2	Rela	ative Displacer	ment (mm))		10
70 - 60 - 50 -	1 2	Rela	ative Displacer	ment (mm))		10
70	1 2	Rela	ative Displacer	ment (mm))		10
70	1 2	Rela	ative Displacer	ment (mm))		10
80 70 60 50	1 2	Rela	ative Displacer	ment (mm))		10
80 70 60 50	1 2	Rela	ative Displacer	ment (mm))		10
50	1 2	Rela	ative Displacer	ment (mm))		10
80 70 60 50 40	1 2	Rela	ative Displacer	ment (mm))		10

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Note: Area correction based on square sample equation.

Notes/Remarks:

Graph not to scale

Authorised Signatory C. Purvis

Sample/s supplied by the client

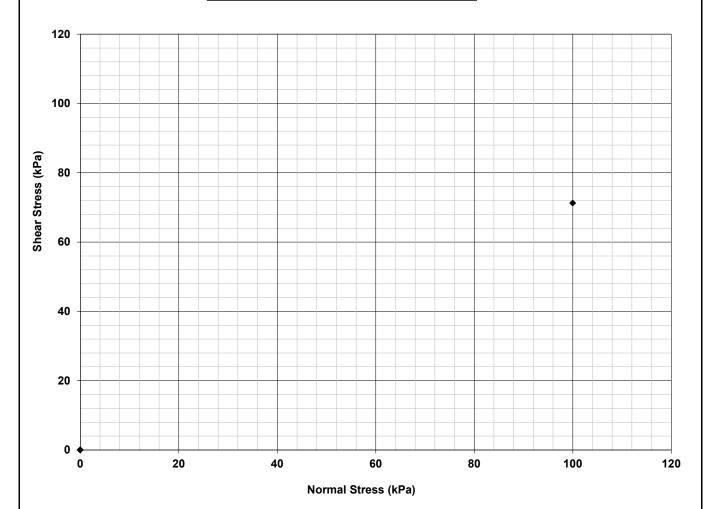
Tested at Trilab Brisbane Laboratory

Laboratory No. 9926

Page 1 of 4 REP07301

Perth
2 Kimmer Place,
Queens Park
WA 6107
Ph: +61 8 9258 8323

DIRECT SHEAR TEST REPORT


Test Method: AS 1289.6.2.2 / KH2 based on K.H. Head Vol. 2

Client Worley Parsons Pty Ltd Report No. 18110383- DS

Failure Criteria

Residual @ 9, , , mm Displacement

Residual - Normal Stress vs Shear Stress

Shear Angle (°)	#DIV/0!	Cohesion (kPa)	#DIV/0!	R ²	#DIV/0!
Specimen Condition	Inundated	Normal Stress (kF	^o a)	Corrected S	hear Stress (kPa)
Specimen Dimensions (mm)	100*100	Stage 1	100.0		71.2
Rate of Strain (mm/min)	0.008				
Initial Moisture Content (%)	24.1				
Initial Wet Density(t/m³)	1.79				

Notes/Remarks:

Note: Area correction based on square sample equation.

Graph not to scale Sample/s supplied by the client Page 2 of 4 REP07301

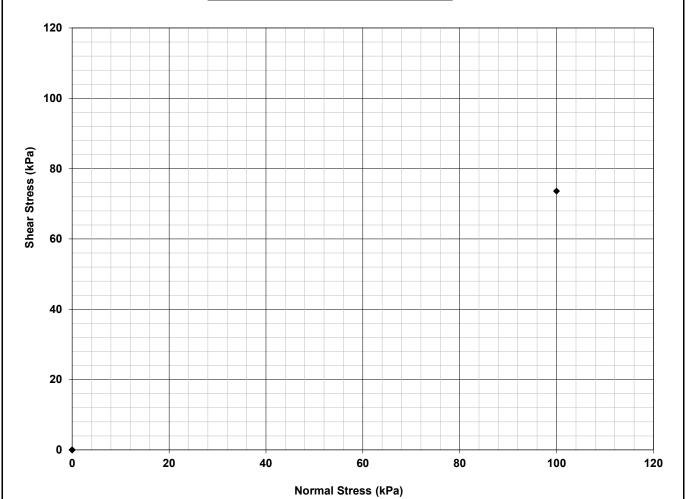
Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory

C. Purvis

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323


DIRECT SHEAR TEST REPORT

Test Method: AS 1289.6.2.2 / KH2 based on K.H. Head Vol. 2

Client Worley Parsons Pty Ltd Report No. 18110383- DS

Failure Criteria Peak

Peak - Normal Stress vs Shear Stress

Shear Angle (Cohesion (kPa)	#DIV/0!	R ²	#DIV/0!	
Specimen Condition	Inundated	Normal Stress (κPa)	Corrected	Shear Stress (kPa)
Specimen Dimensions (mm)	100*100	Stage 1	100.0		73.6
Rate of Strain (mm/min)	0.008				
Initial Moisture Content (%)	24.1				
Initial Wet Density(t/m³)	1.79				

Notes/Remarks:

Note: Area correction based on square sample equation.

Graph not to scale Sample/s supplied by the client Page 3 of 4 REP07301

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

ncluded in this lards.

Authorised Signatory

Tested at Trilab Brisbane Laboratory

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

DIRECT SHEAR TEST REPORT

Test Method: AS 1289.6.2.2 / KH2 based on K.H. Head Vol. 2

Client Worley Parsons Pty Ltd Report No. 18110383- DS

CLIENT:	Worley Parsons Pty L	
PROJECT:	301001-02095	AFTER TEST
LAB SAMPLE N	o. 18110383	DATE: 26/11/18
BOREHOLE:	SB_45	DEPTH: 5.80

Notes/Remarks:

Photo not to scale Sample/s supplied by the client Page 4 of 4 REP07301

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory

Authorised Signatory C. Purvis

Brisbane 346A Bilsen Road, Geebung QLD 4034

Ph: +61 7 3265 5656

Report Date:

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

3/12/2018

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110381 - CU

> 0005139 Workorder No.

Level 7, 250 St George's Terrace PERTH WA Address **Test Date:** 23/11/2018

6000

301001-02095 Project:

Client Id.: B1 07/B3 14/B4 01/B5 10 - Combined Depth (m): -

Description: SILTY CLAY- grey

SAMPLE & TEST DETAILS Initial Height: 99.4 Initial Moisture Content: 22.7 0.006 %/min Rate of Strain: mm Initial Diameter: 47.7 Final Moisture Content: 35.6 % B Response: 99 % mm L/D Ratio: t/m³ 2.1:1 Wet Density: 1.70 Dry Density: 1.38 t/m³

Sample Type: Single Individual Specimen remoulded as per client request

TEST RESULTS

FAILURE DETAILS

	Confining	Back		Failure	Principal Effective Stresses			Deviator Stress	Strain
Effective Pressure	Pressure	Pressure	Initial Pore	Pore	σ ' ₁	σ' ₃	σ'_1/σ'_3		
52 kPa	549 kPa	497 kPa	497 kPa	521 kPa	79 kPa	28 kPa	2.817	51 kPa	1.27 %
101 kPa	599 kPa	498 kPa	498 kPa	547 kPa	137 kPa	52 kPa	2.639	85 kPa	3.57 %
199 kPa	698 kPa	499 kPa	499 kPa	592 kPa	272 kPa	106 kPa	2.562	166 kPa	6.53 %
1									

FAILURE ENVELOPES

Interpretation between stages: 1 to 2 2 to 3

Failure Criteria:

2.5 Cohesion C' (kPa): 2.9 3.5

Peak Principal Stress Ratio

Angle of Shear Resistance Φ' (Degrees) : 24.7 25.3 25.1

Remarks:

Sample/s supplied by the client Page 1 of 7

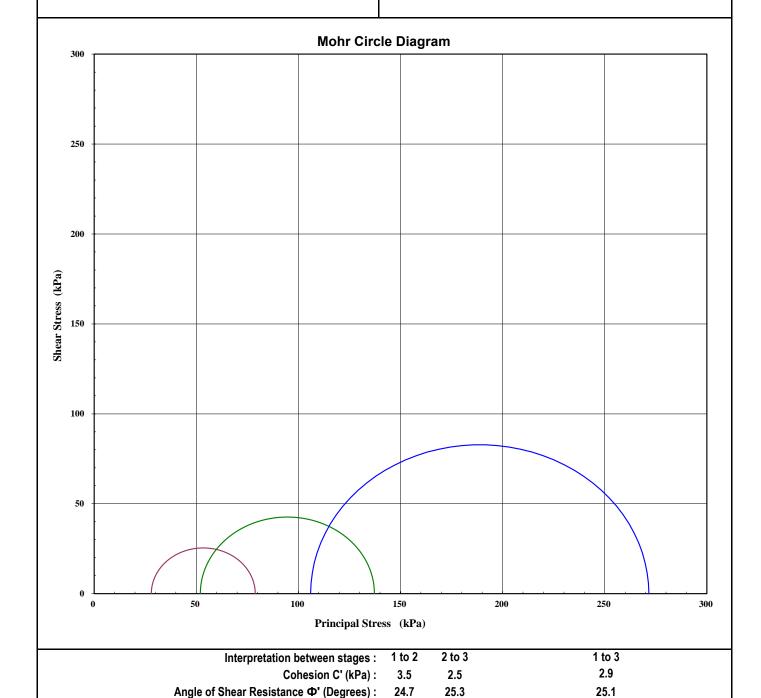
REP03001

1 to 3

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory C. Channon



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110381 - CU

Failure Criteria: Peak Principal Stress Ratio

Remarks:

Sample/s supplied by the client

Note: Graph not to scale

Page 2 of 7 REP03001

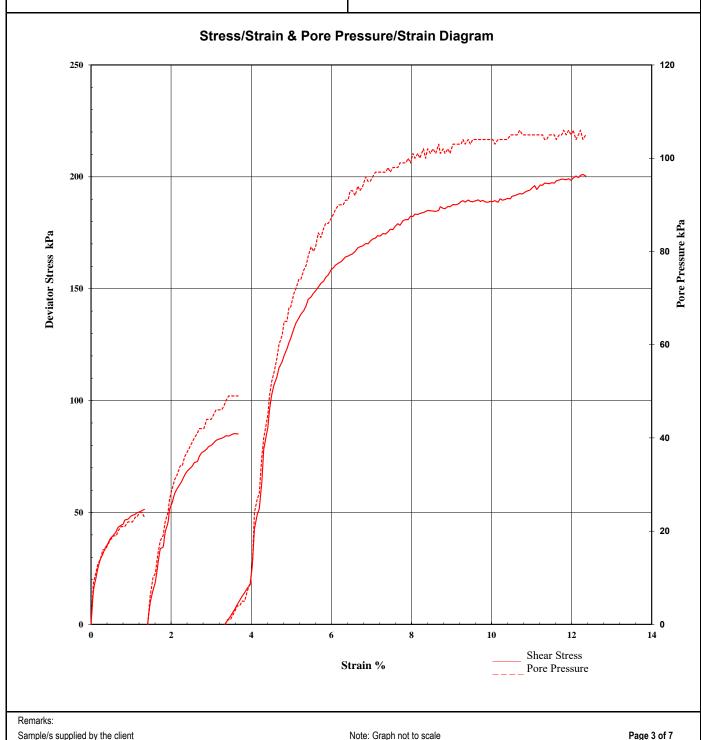
Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

C. Channon



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd 18110381 - CU Report No.:

Sample/s supplied by the client Note: Graph not to scale

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

C. Channon

REP03001


Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110381 - CU

MIT Method - Effective Stress Path

 $s = (\sigma'_1 + \sigma'_3)/2$ kPa

Remarks:

Sample/s supplied by the client

Note: Graph not to scale

Page 4 of 7

REP03001

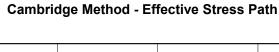
Accredited for compliance with ISO/IEC 17025 - Testing.

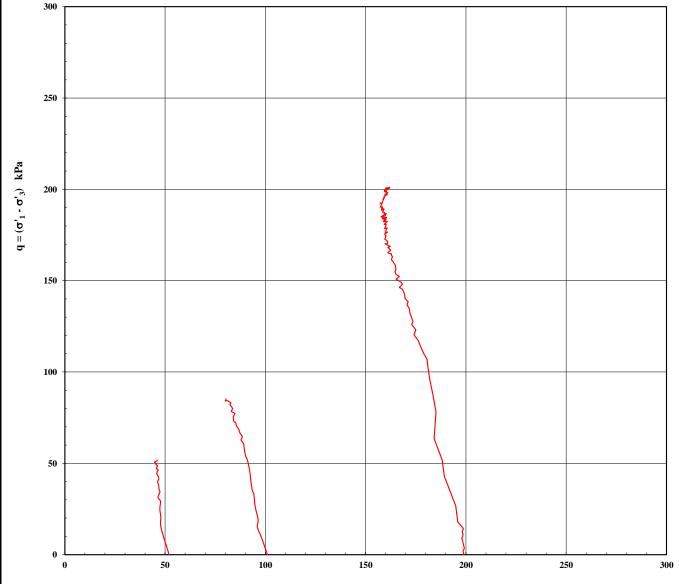
The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory

Tested at Trilab Brisbane Laboratory.




Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110381 - CU

 $p = (\sigma'_1 + 2\sigma'_3)/3 \quad kPa$

Remarks:

Sample/s supplied by the client Not

Note: Graph not to scale

Page 5 of 7

REP03001

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory

Tested at Trilab Brisbane Laboratory.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd 18110381 - CU Report No.:

Sample/s supplied by the client

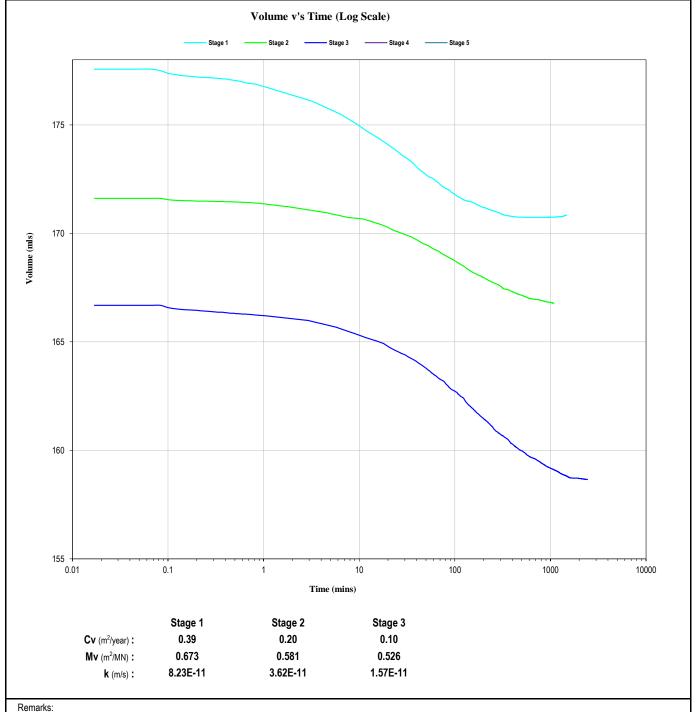
Note: Photo not to scale

Page 6 of 7 REP03001

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory



Tested at Trilab Brisbane Laboratory.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT Test Method: AS1289.6.4.2 Client: Worley Parsons Pty Ltd 18110381 - CU Report No.:

Sample/s supplied by the client Note: Graph not to scale Page 7 of 7 REP03001

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory

Tested at Trilab Brisbane Laboratory.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110382 - CU

Workorder No. 0005139

Address Level 7, 250 St George's Terrace PERTH WA Test Date: 19/11/2018

6000 Report Date: 3/12/2018

Project: 301001-02095

Client Id.: OP2_18 Depth (m): -

Description: CLAYEY SILTY SAND- grey

SAMPLE & TEST DETAILS Initial Height: 99.2 Initial Moisture Content: 24.9 0.006 %/min Rate of Strain: mm Initial Diameter: 47.8 Final Moisture Content: 18.8 % B Response: 97 % mm L/D Ratio: t/m³ 2.1:1 Wet Density: 1.87 Dry Density: 1.50 t/m³

Sample Type: Single Individual Specimen remoulded as per client request

TEST RESULTS

FAILURE DETAILS

	Confining	Back		Failure	Principal Effective Stresses			Deviator Stress	Strain
Effective Pressure	Pressure	Pressure	Initial Pore	Pore	σ ' ₁	σ' ₃	σ'_1/σ'_3		
49 kPa	551 kPa	502 kPa	502 kPa	534 kPa	78 kPa	18 kPa	4.404	60 kPa	1.91 %
101 kPa	602 kPa	501 kPa	501 kPa	566 kPa	149 kPa	36 kPa	4.187	114 kPa	3.78 %
200 kPa	702 kPa	502 kPa	502 kPa	630 kPa	272 kPa	72 kPa	3.793	201 kPa	6.09 %
ı									
1									

FAILURE ENVELOPES

Interpretation between stages: 1 to 2 2 to 3 1 to 3

Cohesion C' (kPa): 1.9 7.6 4.7

Angle of Shear Resistance Φ' (Degrees): 36.7 33.1 34.2

Failure Criteria: Peak Principal Stress Ratio

Remarks:

Sample/s supplied by the client Page 1 of 7

REP03001

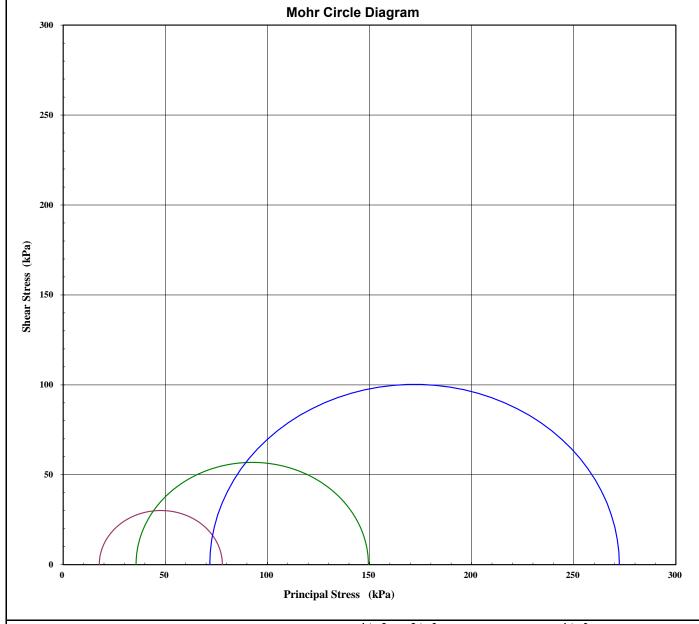
Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

C. Channon



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110382 - CU

Interpretation between stages :

1 to 2 2 to 3

1 to 3

Cohesion C' (kPa) :

1.9 7.6

4.7

Angle of Shear Resistance Φ' (Degrees) :

36.7 33.1

242

Failure Criteria: Peak Principal Stress Ratio

34.2

Remarks:

Sample/s supplied by the client Note: Graph not to scale

Page 2 of 7

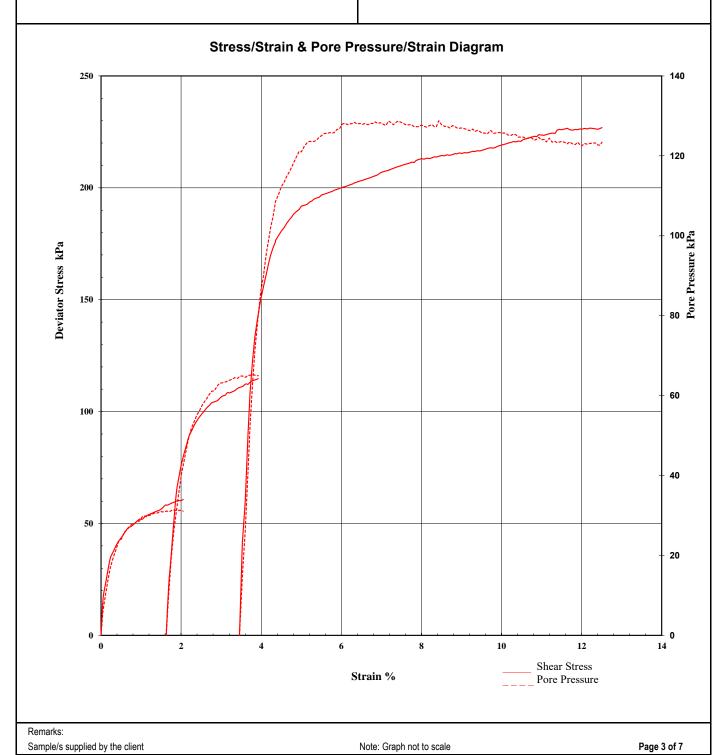
Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory

Tested at Trilab Brisbane Laboratory.



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110382 - CU

REP03001

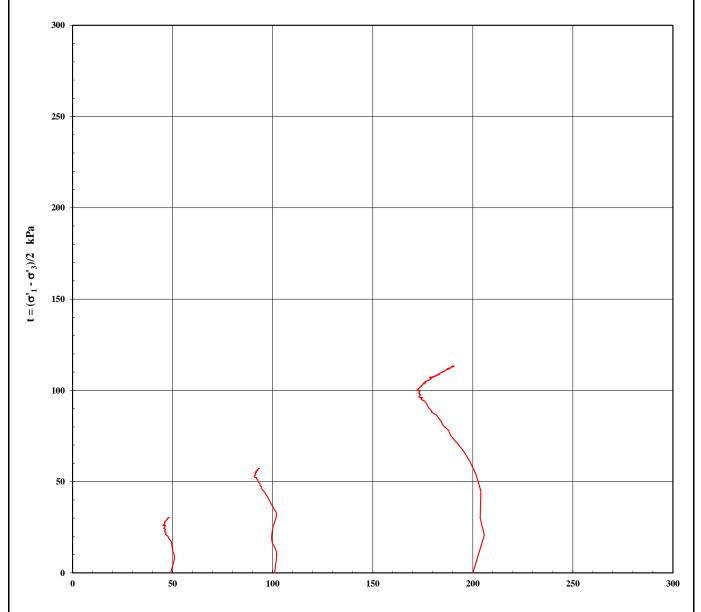
Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

C. Channon


Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110382 - CU

MIT Method - Effective Stress Path

 $s = (\sigma'_1 + \sigma'_3)/2$ kPa

Remarks:

Sample/s supplied by the client

Note: Graph not to scale

Page 4 of 7

REP03001

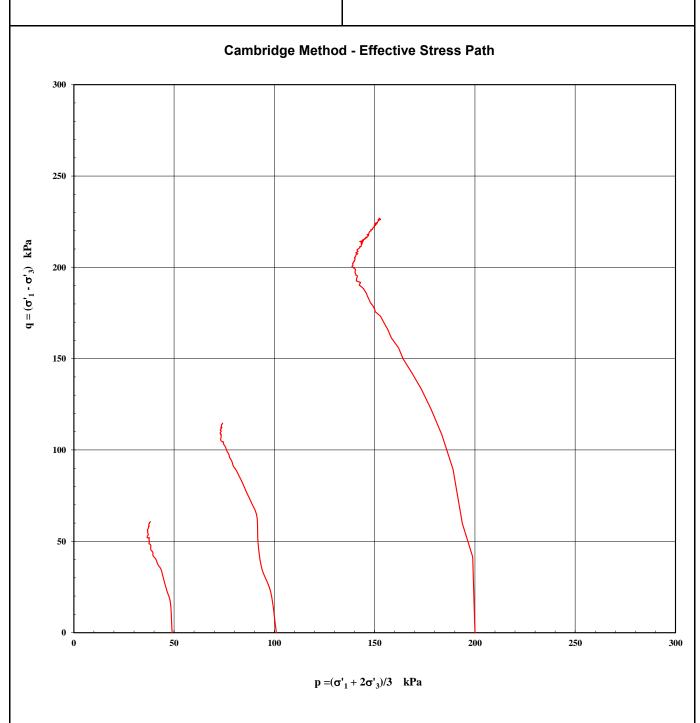
Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory

Tested at Trilab Brisbane Laboratory.



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110382 - CU

Remarks:

Sample/s supplied by the client Note: Graph not to scale

Page 5 of 7

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory

Tested at Trilab Brisbane Laboratory.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110382 - CU

CLIENT:	Worley Parsons Pty L	td
PROJECT:	301001-02095	AFTER TEST
LAB SAMPLE No.	18110382	DATE: 23/11/18
BOREHOLE:	OP2_18	DEPTH: 4.40
		-
	The same of the sa	
	200	
	Contract of the last	

Remarks:

Sample/s supplied by the client Note: Photo not to scale

Page 6 of 7 REP03001

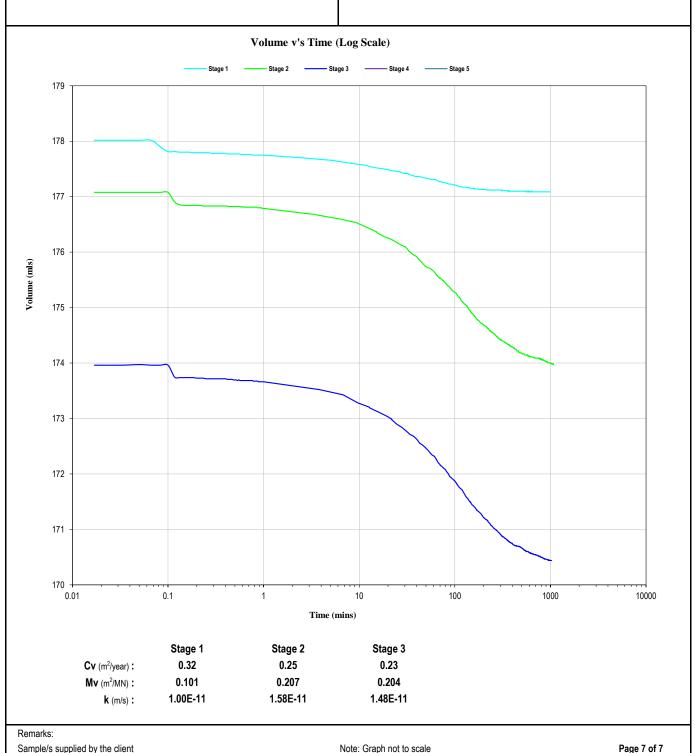
Accredited for compliance with ISO/IEC 17025 - Testing.
The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory

ACCREDITED FOR TECHNICAL COMPETENCE

Tested at Trilab Brisbane Laboratory.



Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

TRIAXIAL TEST REPORT

Test Method: AS1289.6.4.2

Client: Worley Parsons Pty Ltd Report No.: 18110382 - CU

REP03001

Accredited for compliance with ISO/IEC 17025 - Testing.
The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

C. Channon

Authorised Signatory

NATA

ACCREDITED FOR
TECHNICAL
COMPETENCE

Tested at Trilab Brisbane Laboratory.

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

OEDOMETER TEST REPORT Test Method: AS1289.6.6.1, 3.5.1 Worley Parsons Pty Ltd 18110381-OED Client: Report No.: Workorder No. 5139 Address: Level 7, 250 St George's Terrace PERTH **Test Date:** 22/11/2018 WA 6000 **Report Date:** 4/12/2018 Project: 301001-02095 Client Id.: B1_07/B3_14/B4_01/B5_10 - Combined Depth (m): **Description:** SILTY CLAY-grey 1.00 14.0 Void Ratio — % Consolidation 12.0 0.95 10.0 0.90 Void Ratio 0.80 4.0 0.75 2.0 0.70 0.0 10 100 1000 Applied Pressure (kPa)

Page 1 of 2 REP03102

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Remarks:

Wet Density (t/m3):

Particle Density (t/m3):

Sample supplied by the client

1.70 2.55

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

Test Condition: Inundated on load

Initial Degree of Saturation (%):

C. Channon

Laboratory Number 9926

Initial Moisture (%):

Initial Voids Ratio:

30.0

0.950

Single Individual Specimen remoulded as per client request

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

OEDOMETER TEST REPORT

Test Method: AS1289.6.6.1, 3.5.1

Worley Parsons Pty Ltd 18110381-OED Client: Report No.:

Workorder No. 5139

Level 7, 250 St George's Terrace PERTH Address:

Test Date: WA 6000

22/11/2018

Report Date: 4/12/2018

Project: 301001-02095

B1_07/B3_14/B4_01/B5_10 - Combined Client Id.: Depth (m):

Description: SILTY CLAY-grey

TEST RESULTS

Stage	Load	Сс	k	Cv (ı	m²/yr)	M V (kPa ⁻¹ x10 ⁻³)	C _a x 10 ⁻³	% Consolidation
	(kPa)		(m/s)	t ₅₀	t ₉₀			
1	40-80	0.038	4.3E-09	17.32	93.46	0.147	0.83	0.6
2	80-160	0.138	3.8E-09	3.20	45.86	0.266	2.25	2.7
3	160-320	0.273	6.5E-09	23.53	77.89	0.269	4.03	6.9
4	320-160	0.059	6.6E-10	0.30	35.47	0.060	0.43	6.0
5	160-320	0.075	8.3E-10	0.03	34.78	0.077	2.30	7.1
6	320-638	0.348	1.2E-09	1.88	20.62	0.180	5.07	12.5
Remarks:	Single Individual Specimen re	emoulded as ne	er client reques					Page 2 of 2

REP03102

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory C. Channon

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

OEDOMETER TEST REPORT Test Method: AS1289.6.6.1, 3.5.1 Worley Parsons Pty Ltd 18110382-OED Client: Report No.: Workorder No. 5139 Address: Level 7, 250 St George's Terrace PERTH **Test Date:** 14/11/2018 WA 6000 **Report Date:** 30/11/2018 Project: 301001-02095 Client Id.: OP2_18 Depth (m): **Description:** CLAYEY SILTY SAND-grey 0.75 16.0 Void Ratio % Consolidation 14.0 0.70 12 0 0.65 10.0 Void Ratio % Consolidation 6.0 0.55 4.0 0.50 2.0 0.45 0.0 10 100 1000 Applied Pressure (kPa) Initial Moisture (%): Test Condition: Inundated on load Wet Density (t/m3): 1.88 25.3 2.58 Initial Voids Ratio: 0.724 Initial Degree of Saturation (%): 90.4 Particle Density (t/m3):

Page 1 of 2 REP03102

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Remarks:

Sample supplied by the client

Tested at Trilab Brisbane Laboratory.

(h-

C. Channon

Authorised Signatory

Laboratory Number 9926

Single Individual Specimen remoulded as per client request

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

OEDOMETER TEST REPORT

Test Method: AS1289.6.6.1, 3.5.1

Client: Worley Parsons Pty Ltd Report No.: 18110382-OED

Workorder No. 5139

 Level 7, 250 St George's Terrace PERTH
 Test Date: 14/11/2018

 WA 6000
 Report Date: 30/11/2018

Project: 301001-02095

Address:

Client Id.: OP2_18 Depth (m): -

Description: CLAYEY SILTY SAND-grey

TEST RESULTS

Stage	Load	Cc	k	Cv (ı	m²/yr)	Mv (kPa ⁻¹ x10 ⁻³)	C _a x 10 ⁻³	% Consolidation
	(kPa)		(m/s)	t ₅₀	t ₉₀			
1	6-10	0.042	8.6E-10	0.33	2.06	1.350	0.84	0.5
2	10-21	0.063	5.0E-10	0.98	1.50	1.081	1.50	1.7
3	21-40	0.098	1.1E-09	0.76	4.32	0.850	2.16	3.3
4	40-80	0.144	1.5E-09	1.34	7.44	0.652	2.39	5.8
5	80-159	0.163	5.4E-10	1.64	4.58	0.378	2.41	8.6
6	159-319	0.155	1.2E-09	1.93	20.11	0.186	2.03	11.4
7	319-159	0.035	2.8E-10	158.82	20.98	0.043	0.09	10.8
8	159-319	0.041	3.6E-10	0.10	22.82	0.050	0.54	11.5
9	319-639	0.152	4.7E-10	2.00	16.31	0.094	2.72	14.1

REP03102

Accredited for compliance with ISO/IEC 17025 - Testing. The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

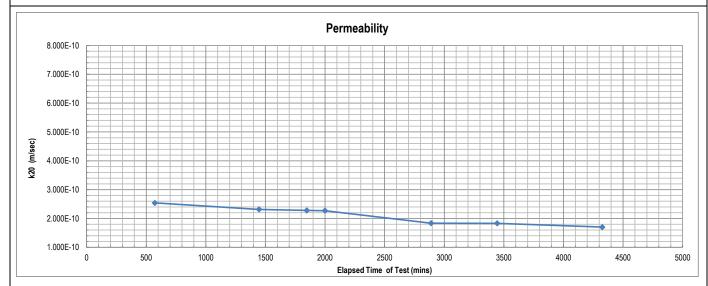
Authorised Signatory

C. Channon

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	PERMEABI	LITY BY FA	LLING HEAD T	EST REPOR	T	
	Test Method AS 1289 6.7.2	2, 5.1.1 , KH2 (Based	d on K H Head (1988) Manu	al of Laboratory Testi	ng,10.7)	
Client	Worley Parsons Pty Ltd			Report No.	1811038	1-FHPT
				Workorder No	.0005139	
Address	Level 7, 250 St George's To	errace PERTH	WA 6000	Test Date	30/11/20	18
				Report Date	6/12/201	8
Project	301001-02095					
Client ID	B1_07/B3_14/B4_01/B5_10	0 - Combined		Depth (m)	-	
Description SILTY CLAY- grey				Sample Type	Remoulded Soil Specimen	
		RESUL	LTS OF TESTING			
Compaction Me	ethod	AS1289.5.1.1 -	- Standard Compaction			
Maximum Dry D	Density (t/m³)	1.45	Hydraulic Gradient			17.4
Optimum Moisture Content (%)		23.3	Surcharge (kPa)	Surcharge (kPa)		25.0
Placement Moisture Content (%)		23.1	Head Pressure Applie	Head Pressure Applied (kPa)		4.32
Moisture Ratio (%)		99.1	Water Type			De-lonized
Placement Wet	Density (t/m³)	1.79	Percentage Material F	Retained/Sieve Size (mm)	0 % /2.36 mm

PERMEABILITY


Density Ratio (%)

 $k_{(20)} =$

100.2

 1.7×10^{-10}

(m/sec)

Remarks: The above specimen was remoulded to a target of 100% of Standard Dry Density and at 100% of Optimum Moisture Content.

Sample/s supplied by client Page: 1 of 1 REP06301

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

C. Channon

Laboratory No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323

	PERMEABI	LITY BY FAL	LING HEAD T	EST REPOR	T	
	Test Method AS 1289 6.7.2	2, 5.1.1 , KH2 (Based o	n K H Head (1988) Manu	al of Laboratory Testi	ng,10.7)	
Client	Worley Parsons Pty Ltd			Report No.	1811038	2-FHPT
				Workorder No	o. 0005139	
Address	Level 7, 250 St George's To	errace PERTH W	/A 6000	Test Date	1/12/201	8
				Report Date	6/12/201	8
Project	301001-02095					
Client ID	OP2_18 De				-	
Description CLAYEY SILTY SAND- dark grey				Sample Type	Remould Specime	
		RESULTS	S OF TESTING			
Compaction Me	thod	AS1289.5.1.1 - St	tandard Compaction			
Maximum Dry D	Density (t/m³)	1.50	Hydraulic Gradient			18.5
Optimum Moistu	optimum Moisture Content (%) 25.0 Surcharge (kPa)				25.0	
Placement Moisture Content (%) 25.5			Head Pressure Applied (kPa)			4.32
Moisture Ratio (%) 102.0 Water Type				De-lonized		

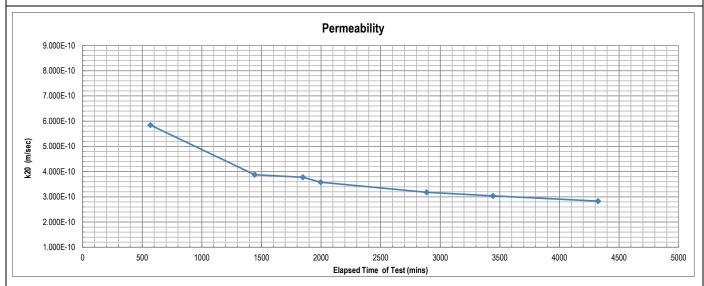
PERMEABILITY

Placement Wet Density (t/m3)

Density Ratio (%)

 $k_{(20)} =$

1.88


99.6

2.8 x 10

Percentage Material Retained/Sieve Size (mm)

(m/sec)

0 % /2.36 mm

Remarks: The above specimen was remoulded as per clients specific instructions.

Sample/s supplied by client Page: 1 of 1 REP06301

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

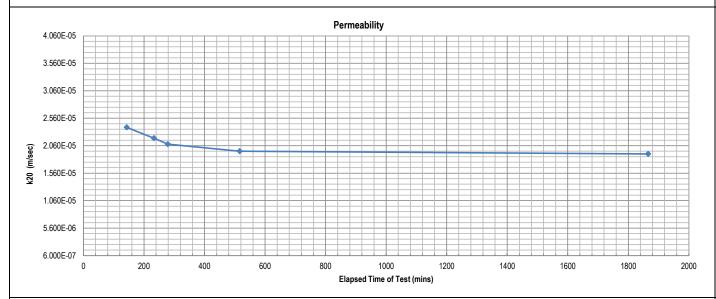
Tested at Trilab Brisbane Laboratory.

Authorised Signatory

C. Channon

Laboratory No. 9926

Perth 2 Kimmer Place, Queens Park WA 6107 Ph: +61 8 9258 8323


PERMEABILITY BY CONSTANT HEAD TEST REPORT Test Method AS 1289 6.7.1, 5.5.1, KH2 (Based on K H Head (1988) Manual of Laboratory Testing, 10.7) Worley Parsons Pty Ltd 18110383-CHP Client Report No. **Workorder No.** 0005139 Level 7, 250 St George's Terrace PERTH WA 6000 **Address Test Date** 3/12/2018 **Report Date** 6/12/2018 **Project** 301001-02095 Client ID SB 45 Depth (m) **Description** SAND- grey Sample Type Remoulded Soil Specimen **RESULTS OF TESTING** Compaction Method AS1289.5.5.1- Max Min Method 1.62 Hydraulic Gradient 1.4 Maximum Dry Density (t/m3) Optimum Moisture Content (%) 24.1 0.0 Surcharge (kPa) Placement Moisture Content (%) 24.0 Head Pressure Applied (kPa) 2.65 Moisture Ratio (%) 99.4 **De-Ionized** Water Type 1.79 0 % / 4.75 mm Percentage Material Retained/Sieve Size (mm) Placement Wet Density (t/m³) 88.9 Sample Height and Diameter (mm) 195 / 114.31 mm Density Ratio (%)

PERMEABILITY

 $k_{(20)} =$

1.9 x 10

(m/sec)

Remarks: The above specimen was remoulded to a target of 70% Relative Density and at Optimum Moisture Content.

Sample/s supplied by client Pag

Accredited for compliance with ISO/IEC 17025 - Testing.

The results of the tests, calibrations, and/or measurements included in this document are traceable to Australian/National Standards.

Tested at Trilab Brisbane Laboratory.

Authorised Signatory

C. Channon

REP06401

Laboratory No. 9926

North Queensland Bulk Ports Marine Sediment Properties Report

Appendix E Wagners laboratory documentation

Base Laboratory: Pinkenba Cement Lab Address: 47 Person 19, Person GLD 4009 Postel Address: PO 800 USM, Eagle Feet 80 QLD 4009 Please: (-PE) 7,3621 E111

Email Site office: Priving althougher comunic Laboratory: Lab Adren Swarzer com s Vietnete: ware warner com su

XRD TEST CERTIFICATE FINAL

Prior Related Certificates: None

Client: Advisian

Client Reference: Beneficial ruse assessment by North Queensland Bulk Ports for Mackay Port

Sample Identification: 1811-0212-X99

Product Information: SB-45

Description: Mackay Port - Wet Sediment

Sampling Location: Mackay Port

Testing Conditon: Dry to SSD, grind & ignited material

Testing Location: Pinkenba Laboratory

Analytical Technique: Bruker AXS D2 X-ray diffractor

CuKa1 operated at 30kV, 10mA

Method of Analysis: Scan region: 10 to 80 2Theta

Step size: 0.02 Time/step 0.5s

TEST RESULTS

Minerals	Quantitative Analysis (wt%)
Quartz	52.43%
Albite	33.16%
Berlinite	4.99%
Aragonite	4.27%
Paratellurite	1.44%
Halite	1.93%
Calicte	1.15%
Strontioborite	0.63%

Note: Any quantitative value determined to be less than 0.5% can be considered negleable and are not included on this report.

Oligoclase could not be added with Topas software as additional mineral.

Remarks: The above results apply only to the sample as described above.

Sample and sampling detail supplied by client.

This documement shall only be reproduced in full unless otherwise authorised in writing from Wagners Cement P/L

NATA Accreditation is not held for analysis using the X-ray diffraction application

Signatory: Tanya Norris

6 December 2018

16 November 2018

27 November 2018

Certificate Issued:

Sample Date:

Prior Related Certificates: None

Wagners Pinkenba Cement Laboratory Address: 47 Pamela St, Pinkenba QLD 4009

Phone: (+61) 7 3621 1111 **Fax:** (+61) 7 3621 1100

Certificate Number: C18-749
Product: X99

 Sample Identification:
 WQP181116-0212

 Description:
 Mackay Port - Wet Sediment

Testing Condition Dry to SSD, grind & ignited material

Sampling Location: Mackay Port

Office Email: Pinkenba@wagner.com.au Laboratory Email: Lab.Admin@wagner.com.au

Website: www.wagner.com.au

Client Reference: SB-45

Certificate Issued: Thursday, 6 December 2018 Sample Date: Friday, 16 November 2018 Date Received: Tuesday, 27 November 2018

TEST RESULTS

Test	Loss on Ignition %	Na₂O eq. %	CI %				
Result	6.2	4.2	0.447				
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2				
AS 3972 Limit	None	None	None				
Test	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO ₃	K ₂ O
	%	%	%	%	%	%	%
Result	69.7	11.2	3.0	5.5	1.1	0.1	1.93
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2
AS 3972 Limit	None	None	None	None	Max 4.5%	None	None
Test	TiO ₂	P2O ⁵	Na ₂ O	CrO ₃	ZnO	Mn2O ³	SrO
	%	%	%	%	%	%	%
Result	0.45	0.07	2.92	0.03	0.00	0.12	0.04
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2
AS 3972 Limit	None	None	None	None	None	None	None

The above results apply only to the sample as described above.

Sample and sampling detail supplied by client.

Equivalent Sodium (NaEq) is a total value.

This documement shall only be reproduced in full unless otherwise authorised in writing from Wagners Cement P/L

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No.17004

The results of the tests, calibraitons and/or measurements included in this document are traceable to Australian/national standards

Fampollowis

Base Laboratory: Pinkenba Cement Lab Address: 47 Pennis St. Prisonba (2.0.400) Postal Address: PO Son 1094, Eagle Farm SC (2.0.400) Pennis (491,7 362) 1111 Fax: (491,7 362) 1100 Ennis: Sier office: Periodia/Decementors.com

XRD TEST CERTIFICATE FINAL

Prior Related Certificates: None

Client: Advisian

Client Reference: Beneficial ruse assessment by North Queensland Bulk Ports for Mackay Port

Sample Identification: 1811-0213-X99

Product Information: SB-02A

Description: Mackay Port - Wet Sediment

Sampling Location: Mackay Port

Testing Conditon: Dry to SSD, grind & ignited material

Testing Location: Pinkenba Laboratory

Analytical Technique: Bruker AXS D2 X-ray diffractor

CuKą1 operated at 30kV, 10mA

Method of Analysis: Scan region: 10 to 80 2Theta

Step size: 0.02 Time/step 0.5s

TEST RESULTS

Minerals	Quantitative Analysis (wt%)
Quartz	65.03%
Albite	21.92%
Berlinite	3.50%
Aragonite	2.06%
Paratellurite	1.20%
Halite	2.75%
Calicte	3.54%

Note: Any quantitative value determined to be less than 0.5% can be considered negleable and are not included on this report.

Oligoclase could not be added with Topas software as additional mineral.

Remarks: The above results apply only to the sample as described above.

Sample and sampling detail supplied by client.

This documement shall only be reproduced in full unless otherwise authorised in writing from Wagners Cement P/L

NATA Accreditation is not held for analysis using the X-ray diffraction application

Signatory: Tanya Norris

6 December 2018

16 November 2018 27 November 2018

Certificate Issued:

Sample Date:

Prior Related Certificates: None

Wagners Pinkenba Cement Laboratory Address: 47 Pamela St, Pinkenba QLD 4009

Phone: (+61) 7 3621 1111 **Fax:** (+61) 7 3621 1100

Certificate Number: C18-750
Product: X99

 Sample Identification:
 WQP181116-0212

 Description:
 Mackay Port - Wet Sediment

 Testing Condition
 Dry to SSD, grind & ignited material

Sampling Location: Mackay Port

Office Email: Pinkenba@wagner.com.au Laboratory Email: Lab.Admin@wagner.com.au

Website: www.wagner.com.au

Client Reference: SB-02A

Certificate Issued: Thursday, 6 December 2018 Sample Date: Friday, 16 November 2018 Date Received: Tuesday, 27 November 2018

TEST RESULTS

Test	Loss on Ignition	Na₂O eq.	CI				
	%	%	%				
Result	7.6	3.6	1.286				
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2				
AS 3972 Limit	None	None	None				
Test	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO ₃	K ₂ O
	%	%	%	%	%	%	%
Result	69.3	10.8	3.5	4.6	1.1	0.4	1.72
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2
AS 3972 Limit	None	None	None	None	Max 4.5%	None	None
Test	TiO ₂	P2O ⁵	Na ₂ O	CrO ₃	ZnO	Mn2O ³	SrO
	%	%	%	%	%	%	%
Result	0.51	0.07	2.42	0.03	0.01	0.11	0.02
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2
AS 3972 Limit	None	None	None	None	None	None	None

The above results apply only to the sample as described above.

Sample and sampling detail supplied by client.

Equivalent Sodium (NaEq) is a total value.

This documement shall only be reproduced in full unless otherwise authorised in writing from Wagners Cement P/L

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No.17004

The results of the tests, calibraitons and/or measurements included in this document are traceable to Australian/national standards

Journal Como

Base Laboratory: Pinkenba Cement Lab Addrex: 47 Panels 9; Pisanba (2.0.400) Postal Address: PO Son 1594, Eagle Fam SC (2.0.400) Places: (-91) 7.302 1111 Fax: (-91) 7.302 1100 Enail: 384 office: Pisanbaltosopher.com.as

XRD TEST CERTIFICATE FINAL

Prior Related Certificates: None

Client: Advisian

Client Reference: Beneficial ruse assessment by North Queensland Bulk Ports for Mackay Port

Sample Identification: 1811-0214-X99 (A)

Product Information: TB05

Description: Mackay Port - Wet Sediment

Sampling Location: Mackay Port

Testing Conditon: Dry to SSD, grind & ignited material

Testing Location: Pinkenba Laboratory

Analytical Technique: Bruker AXS D2 X-ray diffractor

CuKą1 operated at 30kV, 10mA

Method of Analysis: Scan region: 10 to 80 2Theta

Step size: 0.02 Time/step 0.5s

TEST RESULTS

Minerals	Quantitative Analysis (wt%)
Quartz	46.80%
Albite	29.24%
Berlinite	5.16%
Aragonite	3.04%
Paratellurite	0.73%
Halite	3.73%
Calicte	3.51%
Strontioborite	0.49%
Retaersite	7.30%

Note: Any quantitative value determined to be less than 0.5% can be considered negleable and are not included on this report.

Oligoclase could not be added with Topas software as additional mineral.

Remarks: The above results apply only to the sample as described above.

Sample and sampling detail supplied by client.

This documement shall only be reproduced in full unless otherwise authorised in writing from Wagners Cement P/L

NATA Accreditation is not held for analysis using the X-ray diffraction application

Signatory: Tanya Norris

6 December 2018

16 November 2018 27 November 2018

Certificate Issued:

Sample Date:

Prior Related Certificates: None

Wagners Pinkenba Cement Laboratory Address: 47 Pamela St, Pinkenba QLD 4009

Phone: (+61) 7 3621 1111 **Fax:** (+61) 7 3621 1100

Certificate Number: C18-750
Product: X99

 Sample Identification:
 WQP181116-0214 (A)

 Description:
 Mackay Port - Wet Sediment

 Testing Condition
 Dry to SSD, grind & ignited material

Sampling Location: Mackay Port

Office Email: Pinkenba@wagner.com.au Laboratory Email: Lab.Admin@wagner.com.au

Website: www.wagner.com.au

Client Reference: TB05

Certificate Issued: Thursday, 6 December 2018 Sample Date: Friday, 16 November 2018 Date Received: Tuesday, 27 November 2018

TEST RESULTS

Test	Loss on Ignition	Na₂O eq.	CI				
	%	%	%				
Result	11.5	3.9	1.461				
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2				
AS 3972 Limit	None	None	None				
Test	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO ₃	K ₂ O
	%	%	%	%	%	%	%
Result	56.6	14.9	5.7	5.5	1.8	0.6	1.70
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2
AS 3972 Limit	None	None	None	None	Max 4.5%	None	None
Test	TiO ₂	P2O ⁵	Na ₂ O	CrO ₃	ZnO	Mn2O ³	SrO
	%	%	%	%	%	%	%
Result	0.82	0.11	2.82	0.01	0.01	0.13	0.03
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2
AS 3972 Limit	None	None	None	None	None	None	None

The above results apply only to the sample as described above.

Sample and sampling detail supplied by client.

Equivalent Sodium (NaEq) is a total value.

This documement shall only be reproduced in full unless otherwise authorised in writing from Wagners Cement P/L

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No.17004

The results of the tests, calibraitons and/or measurements included in this document are traceable to Australian/national standards

Tampflems

Base Laboratory: Pinkenba Cement Lab Address: 47 Persenbi 52 Priserbi 22D 5009 Postal Address: FO Son 1594, Eagle Fam SC QLD 4009 Please: (+917 302) 1111 Fax: (+917 302) 1110

Email Site office: Printed Steamer con us Laboratory: Lat: Advandance con s

XRD TEST CERTIFICATE FINAL

Prior Related Certificates: None

Client: Advisian

Client Reference: Beneficial ruse assessment by North Queensland Bulk Ports for Mackay Port

Sample Identification: 1811-0214-X99 (B)

Product Information: TB05

Description: Mackay Port - Wet Sediment

Sampling Location: Mackay Port

Testing Conditon: Dry to SSD, grind & ignited material

Testing Location: Pinkenba Laboratory

Analytical Technique: Bruker AXS D2 X-ray diffractor

CuKa1 operated at 30kV, 10mA

Method of Analysis: Scan region: 10 to 80 2Theta

Step size: 0.02 Time/step 0.5s

TEST RESULTS

Minerals	Quantitative Analysis (wt%)
Quartz	31.04%
Albite	5.07%
Berlinite	1.91%
Aragonite	17.55%
Paratellurite	3.21%
Halite	4.77%
Calicte	22.07%
Strontioborite	5.57%
Retgersite	8.06%
Granhite	0.75%

Note: Any quantitative value determined to be less than 0.5% can be considered negleable and are not included on this report.

Oligoclase could not be added with Topas software as additional mineral.

Remarks: The above results apply only to the sample as described above.

Sample and sampling detail supplied by client.

This documement shall only be reproduced in full unless otherwise authorised in writing from Wagners Cement P/L

NATA Accreditation is not held for analysis using the X-ray diffraction application

Signatory: Tanya Norris

6 December 2018

16 November 2018 27 November 2018

Certificate Issued:

Sample Date:

Prior Related Certificates: None

Wagners Pinkenba Cement Laboratory Address: 47 Pamela St, Pinkenba QLD 4009

Phone: (+61) 7 3621 1111 **Fax:** (+61) 7 3621 1100

Certificate Number: C18-750
Product: X99

 Sample Identification:
 WQP181116-0214 (B)

 Description:
 Mackay Port - Wet Sediment

 Testing Condition
 Dry to SSD, grind & ignited material

Sampling Location: Mackay Port

Office Email: Pinkenba@wagner.com.au Laboratory Email: Lab.Admin@wagner.com.au

Website: www.wagner.com.au

Client Reference: TB05

Certificate Issued: Thursday, 6 December 2018 Sample Date: Friday, 16 November 2018 Date Received: Tuesday, 27 November 2018

TEST RESULTS

Test	Loss on Ignition	Na₂O eq.	CI				
	%	%	%				
Result	11.5	4.8	2.807				
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2				
AS 3972 Limit	None	None	None				
Test	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO ₃	K₂O
	%	%	%	%	%	%	%
Result	52.2	14.9	5.7	5.8	2.0	0.9	1.68
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2
AS 3972 Limit	None	None	None	None	Max 4.5%	None	None
Test	TiO ₂	P2O ⁵	Na ₂ O	CrO ₃	ZnO	Mn2O ³	SrO
	%	%	%	%	%	%	%
Result	0.82	0.13	3.67	0.01	0.01	0.14	0.04
Standard:	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2	AS/NZS 2350.2
AS 3972 Limit	None	None	None	None	None	None	None

The above results apply only to the sample as described above.

Sample and sampling detail supplied by client.

Equivalent Sodium (NaEq) is a total value.

This documement shall only be reproduced in full unless otherwise authorised in writing from Wagners Cement P/L

Accredited for compliance with ISO/IEC 17025 - Testing

Accreditation No.17004

The results of the tests, calibraitons and/or measurements included in this document are traceable to Australian/national standards

Fampollonis